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Abstract. Multiplex immunohistochemistry (IHC) staining is a newly
emerging technique for the detection of multiple biomarkers within a
single tissue section and has become more popular due to its significant
efficiency and the rich diagnostic information it contains. Therefore, to
accurately unmix the IHC image and differentiate all the stains is of
tremendous clinical importance since it is the initial key step in multi-
plex IHC image analysis in digital pathology. Due to the limitation of the
CCD color camera, the acquired RGB image only contains three chan-
nels, and the unmixing of which into more than three colors is hence a
challenging task. To the best of our knowledge, such a problem is barely
studied in literature.

This paper presents a novel stain unmixing algorithm for brightfield
multiplex IHC images based on a group sparsity model. The proposed
framework achieves robust unmixing for more than three chromogenic
dyes while preserving the biological constraints of the biomarkers. Typ-
ically, a number of biomarkers co-localize in the same cell parts. With
this biological information known as a priori, the number of stains at
one pixel therefore has a fixed up-bound, i.e. equivalent to the number
of co-localized biomarkers. By leveraging the group sparsity model, the
fractions of stain contributions from the co-localized biomarkers are ex-
plicitly modeled into one group to yield least square solution within the
group. Sparse solution is obtained among the groups since idealy only
one group of biomarkers are present at each pixel. The algorithm is eval-
uated on both synthetic and clinical data sets and demonstrates better
unmixing results than the existing strategies.

1 Introduction

A multiplex immunohistochemistry (IHC) slide has the potential advantage of
simultaneously identifying multiple biomarkers in one tissue section as opposed
to single biomarker labeling in multiple slides. Therefore, it is often used for si-
multaneous assessment of multiple biomarkers in cancerous tissue. For example,
tumors often contain infiltrates of immune cells, which may prevent the develop-
ment of tumors or favor the outgrowth of tumors [1]. In this scenario, multiple
biomarkers are used to target different types of immune cells and the population
distribution of each type of them is used to study the clinical outcome of the pa-
tients. The biomarkers of the immune cells are stained by different chromogenic
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dyes. In order to conduct accurate detection and classification of the cells, the
correct unmixing of the IHC digital image to its individual constituent dyes for
each biomarker and obtaining the proportion of each dye in the color mixture is
a prerequisite step for multiplex IHC image analysis.

Typically, a tissue slide is stained by the multiplex assay. The stained slide
is then imaged using a CCD color camera mounted on a microscope or a scan-
ner. The acquired RGB color image is a mixture of the underlying co-localized
biomarker expressions. Several techniques have been proposed in the literature
to decompose each pixel of the RGB image into a collection of constituent stains
and the fractions of the contributions from each of them. Ruifrok et al. devel-
oped an unmixing method called color deconvolution [2] to unmix the RGB
image with up to three stains in the converted optical density space. Given the
reference color vectors xi ∈ R3 of the pure stains, the method assumes that
each pixel of the color mixture y ∈ R3 is a linear combination of the pure stain
colors and solves a linear system to obtain the combination weights b ∈ RM .
The linear system is denoted as y = Xb, where X = [x1, . . . , xM ],M ≤ 3 is
the matrix of reference colors. This technique is currently most widely used in
digital pathology domain, however, the maximum number of stains which can
be resolved is limited to three, as the linear system is deficient for not having
enough equations when there are more than three stains. A multilayer percep-
tron learning based technique has been proposed in [4] for three color brightfield
image unmixing. In [3], Rabinovich et al. formulated the color unmixing prob-
lem into non-negative matrix factorization and proposed a system capable of
performing the color decomposition in a fully automated manner, wherein no
reference stain color selection is required. Again, these methods have the same
limitation in dealing with large stain numbers due to solving y = Xb. To the best
of our knowledge, the method of unmixing brightfield IHC image with more than
three stains is not available in literature. In order to compare with the Ruifrok’s
method, we divide the color space into several systems with up to three colors in
each system based on nearest color matching of each pixel to one of the systems.
Ruifrok’s method can therefore be used in solving each individual system. Due
to the independent assignment of each pixel into different systems, the spatial
continuity is lost in the unmixed images and artifacts such as holes are observed.
However, this is the most straightforward modification of Ruifrok’s method to
work on more than three color multiplex brightfield image unmixing.

Alternatively, there exists another class of methods for multi-spectral image
unmixing that works for a larger number of stain colors [5–9]. In fact, the multi-
spectral image differs from the RGB image in terms of image acquisition. Multi-
spectral imaging system is used to capture the image using a set of spectral
narrow-band filters instead of the CCD color camera. The number of filters K
can be as many as dozens or hundreds, leading to a mutli-channel image that
provides much richer information than the bright field RGB image. The linear
system constructed from it is always an over-determined system with X being a
K ×M(K �M) matrix that leads to a unique solution. However, the scanning
process in the mutli-spectral imaging system is very time consuming and only a
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single field of view, manually selected by the technician, can be scanned instead
of the whole slide, the usage of which is thus limited. As an example of the
multi-spectral imaging unmixing, the two-stage methods [6, 7] are developed in
the remote sensing domain to first learn the reference colors from the image
context and then use them to unmix the image. More recently, a sparse model
is proposed by Greer in [9] for high dimensional multi-spectral image unmixing.
It adopts the L0 norm to regularize the combination weights b of the reference
colors hence leads to a solution that only a small number of reference colors
are contributed to the stain color mixture. This serves as a valuable source of
inspiration for selecting regularization terms for the linear system. However, the
method proposed in [9] is also designed for multi-spectral image and no prior
biological information about the biomarkers are used in that framework which
may lead to undesired solution for real data.

In this paper, we propose a novel color unmixing algorithm for multiplex
IHC image (scanned using CCD color camera) that can handle more than three
stain colors and maintain the biological properties of the biomarkers. Intuitively,
the unmixing algorithm for the multiplex IHC image should work as following.
(1) Only one group of stains has non-zero contribution in the color mixture for
each pixel. (2) Within that group, the fractions of the contributions from each
constituent stain should be correctly estimated. These conditions motivate us to
model the unmixing problem within the group sparsity [10] framework so as to
ensure the sparsity among the group but non-sparsity within the group.

2 Methodology

Fig. 1: The group sparsity framework of the unmixing algorithm.

In this section, we present the methodology of our algorithm. We begin with
illustrating the basic framework in Fig.1 using the following example. In the
analysis of cancerous tissues, different biomarkers are specified to one or more
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types of immune cells. For instance, CD3 is a known universal marker for all T-
cells and CD8 only stains the membranes of the cytotoxic T-cells. FoxP3 marks
the regulatory T-cells in the nuclei and Hematoxylin (HTX) stains all the nuclei.
Therefore, the co-localization information of the markers can be inferred from
the biological knowledge, i.e. CD3 and CD8 co-locate in the membrane while
FoxP3 and HTX may appear in the same nucleus. We can also have tumor
marker on the tumor cell’s cytoplasm region and B-cell marker on the B-cell’s
membrane. The framework of our proposed algorithm is shown in Fig.1 using
the aforementioned immune cell example. Based on this biological co-localization
information of the biomarkers, it is straightforward to conclude that only two
colors can co-exist at each pixel for this case. The six chromogenic stains are
therefore grouped into four different groups where co-localized stains are in the
same group, as shown in the right panel of Fig.1.

2.1 Optical Density Transform

For the preprocessing, the RGB image I is converted into the optical density
(OD) space using the following formula derived from Beer’s law based on the
fact that the optical density is proportional to the stain concentration.

Oc = − log(
Ic
I0,c

) (1)

where c is the index of the RGB color channels, I0 is the RGB value of the white
points and O is the optical density image obtained. As in [2], O will be image
to work with in the rest of the paper.

2.2 Group Sparsity Unmixing

We begin with illustrating the notations used in this paper. Let y be a pixel
of O and it is a 3-dimensional column vector corresponding to the OD values
converted from RGB. Assume there are M biomarkers available in the multiplex
IHC slide. We have M stain colors. Let b be the combination weight vector of
the stains and bm,m = 1, . . . ,M is the mth element of b. The typical unmixing
problem thus is formulated as the following:

min
b
||y−Xb||22. (2)

Each column of X corresponds to a reference stain color sampled from the control
slide of pure stain. As we discussed before, this linear system has solution only
when the column of X is less than or equal to 3 for y ∈ R3. Therefore, meaningful
regularization is needed for the linear system to have a solution.

The biomarker co-localization information provides a partition of b into a set
of groups g1, g2, . . . , gN , N being the total number of groups. Within each group,
the biomarkers are known to have the co-localization possibility. We adopt this
biological information to formulate the regularization term of the cost funciton.
Let gi be a qi-dimensional column vector representing the combination weights
of the stains within the ith group and qi be the number of stains within the group
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gi. We thus have q1 + q2 . . . + qN = M . xi denotes the ith group of reference
colors, which is a 3 × qi matrix. Fig.1 shows an example of the stain group
setting. Six stains are available in this example (M = 6). Two of them are co-
localized membrane stains and two are co-localized nucleus stains. One is tumor
cytokeratin stain and the rest is a membrane stain but only for B-cell. This
information allows us to divide the stains into four groups (N = 4) as shown
in Fig.1. For instance, g2 contains b2 and b3 that are corresponding to the two
co-located nucleus stains and x2 contains the reference color vectors for all the
stains within the 2nd group. However, the 4th stain of B-cell marker does not
co-localize with other biomarkers, so g3 only has one single member b4 and x3
is its reference color vector.

More specifically, the unmixing problem is formulated as the following convex
optimization problem with the aforementioned notations:

min
b
||y−

N∑
i=1

xigi||22 + λ

N∑
i=1

√
qi||gi||2 (3)

where b = [b1, b2, . . . , bM ]t = [gt1, g
t
2, . . . , g

t
N ]t and || · ||2 is the Euclidean norm

with out squared. The first term in Eqn.3 solves for the linear system that is
equivalent to [2], which minimize the least square error between the intensity of
the raw image and the possible linear combination of the reference colors that
approximates the raw image. λ is the regularization parameter that controls the
amount of the group sparsity constraint in the second term. This model will
act like LASSO at the group level. The entire groups will be dropped out when
optimal b (or g) is found, that is only a small number of gi are non-zero.

Note that when the size of each group qi = 1, the model becomes equivalent to
lasso. In this case, no biological co-localization information is used in this model
however the system remains to be solvable due to the sparsity constraints. The
background noise is suppressed in this setting, comparing to the conventional
Ruifrok’s method. In the experiment section, we’ll also demonstrate the efficacy
of lasso unmixing by limiting the size of the group to 1.

Alternative direction method of multipliers (ADMM) algorithm [11] is used to
solve Eqn.3. We implemented the algorithm in C++ to provide fast computation.
It costs about 7 seconds to unmix a 750 by 1400 image on an Intel Core i7
1.87GHZ PC.

3 Experiments

3.1 Synthetic Data Experiment

As ground truth unmixing results are not available for real clinical data, we cre-
ated a synthetic multiplex image from ground truth unmixed channels to validate
our algorithm. We first synthetically generated six unmixed images as shown in
the first row of Fig.2 C, following the stain co-localization and grouping rule
in the example framework (Fig.1). The vectorized binary masks of the unmixed
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Fig. 2: Toy example. A: Image to be unmixed. B: The average intensity error of in-
creasing λ for each channel. C: Unmixing results with different λ.

channels were multiplied by the reference color matrix to create the multiplex
image in Fig.2 A. To demonstrate the algorithm performance w.r.t. the group
sparsity regularization parameter λ variation, we plotted the average intensity
error between the algorithm outputs and the ground truth unmixed channels
in Fig.2 B for λ with in the range 0 to 2.The plot shows that the system has
stable solutions when λ > 0.3. In Fig. 2 C, we also show the unmixing results
for increasing λ. Note that when λ = 0.01, the system is close to deficient as in
Eqn.2, hence unmixing errors are observed as shown in the second row of Fig.2
C.

3.2 Clinical Data Experiment

Fig. 3: Multiplexed tis-
sue image real data ex-
ample.

A clinical data set containing several different cancer
tissue samples was used to demonstrate the proposed
algorithm, including colorectal cancer, non small cell
lung cancer and breast cancer that consist of 32 fields
of view (FOV). The tissues were stained with the fol-
lowing assay as shown in Fig. 3: yellow chromogen
for tumor cell cytokeratin, purple for regulatory T-
cell nucleus, blue for universal nucleus, light blue for
B-cell membrane, orange for universal T-cell mem-
brane and dark green for cytotoxic T-cell membrane.
Fig.5 shows the unmixing examples of decomposing
the multiplexed image into single stain channels using
modified Ruifrok’s method based on nearest neigh-
bor color assignment and the proposed group sparsity
method. Note that λ is set to be 0.5 through the clinical data experiments. Pixel
discontinuities, unmixing errors and artifacts are observed from the modified
Ruifrok’s method by solving multiple three color systems using the color sim-
ilarity for system assignment. The proposed method instead solves one single
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system for all the pixels hence leads to a smoother unmixed images, meanwhile
maintains the biological constraints as wells as reduces the background noises
due to the group sparsity regularization.

Since the cytotoxic T-cell is a subset of the universal T-cell, the green cy-
totoxic T-cell membrane marker always co-localizes with the orange universal
T-cell membrane marker, but the orange marker can present alone. Fig. 6 shows
an example of the orange only cell and the green and orange co-localized cell.
We can see that the aglorithm is able to handle both cases. This demonstrates
that the L2 norm constraint is used within the group to linearly separate the
color mixture into different stain channels. Meanwhile, the modified Ruifrok’s
method is prone to unmixing errors due to the hard assignment of the unmixing
system based on color similarity.

Fig. 4: Two-stain unmixing result comparisons when
group size is 1.

As a special case
example, the algo-
rithm can also be
used for less than or
equal to three color
unmixing. When the
group size becomes
1, the algorithm is
equivalent to Ruifrok’s
unmixing plus a sparse
constraint on the com-
bination weights. The
system can be solved
by LASSO. We set
the group size to
1 and compared to
Ruifrok’s method [2]
for two-stain unmix-
ing on a clinical breast
cancer data set con-
taining 217 FOVs.
The proposed tech-
nique consistently shows
better performance than Ruifrok’s method. Example results are shown in Fig.4
and much less background noise is observed using the proposed sparse unmixing
method.

4 Conclusion

In this paper, we introduce a novel color unmixing strategy for multiplexed
bright field histopathology images based on a group sparsity model. The bio-
logical co-localization information of the biomarkers is explicitly defined in the
regularization term to produce biologically meaningful unmixing results. The
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Fig. 5: Comparisons between the proposed group sparsity unmixing method and the
modified Ruifrok’s method based on nearest neighbor color assignment. More com-
pleted nuclei (purple and blue channels) are observed in group sparsity unmixing re-
sults. Incorrect universal T-cell unmixing is observed in modified Ruifrok’s unmixing
result due to the lack of co-localization constraint.

Fig. 6: Example unmixing of T-cell membrane co-localization case. a: The proposed
group sparsity method without co-localization constraint (group size = 1). b: The
proposed group sparsity method with co-localization constraint (group size = 2 for the
two membrane stainings).

experiments of both synthetic and clinical data demonstrate the efficacy of the
proposed algorithm in terms of accuracy and stability when compared to the
existing techniques.
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