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Abstract. Shape prior modeling is a challenging and crucial component in vari-
ous image segmentation applications. Most existing methods aim at dealing 
with single object’s shape variation, which are not directly applicable for multi-
shape prior modeling. In this paper, we present an extension of recently pro-
posed Spare Shape Composition model (SSC) for multi-shape prior modeling. 
In this extension, multiple shapes of one patient are regarded as a group. A 
sparse linear composition of training groups is computed iteratively to in-
fer/refine the input group. Thus, not only the a-priori information of each shape 
but also the a-priori codependency information among different shapes is im-
plicitly incorporated on-the-fly. To validate the efficacy of our method, a 2D 
left ventricular endocardium and epicardium localization experiment was con-
ducted. The localization result demonstrates that the utilization of our method 
can achieve more accurate and stable localization compared with SSC. 

1 Introduction 

In various image segmentation applications, especially in the field of medical image 
segmentation, methods solely relying on image appearance cues usually tend to 
achieve unsatisfactory result. The fact that objects usually contain strong shape priors, 
gives rise to various shape model based segmentation methods. Leventon et al. [1] 
defined a probability distribution over the variances of training shapes, and utilized it 
to restrict the flow of the geodesic active contour. In [2], Cremers et al. incorporated 
statistical shape knowledge in the evolution process of a Mumford-Shah based seg-
mentation [3]. Ali et al. [4] integrated prior shape constraints into a graph cuts frame-
work for kidney segmentation. Such segmentation approaches have been proven to be 
one of the most successful methods in practice, and outperform the conventional 
methods in both robustness and accuracy owing to the integration of a-priori infor-
mation. 

Shape prior modeling plays a significant role in these methods, and is very crucial 
for the final accuracy and robustness. A straightforward approach is to learn from a 
number of training shapes by statistical means, leading to statistical shape models 
(SSMs) [5]. Active Shape models [6] and Active Appearance models [7] proposed by 



Cootes et al. in 1995 and 2001, probably are two of the most popular methods in this 
area. Another widely-used method is level set shape prior model [8]. Subsequently, 
plenty of adaptations of these algorithms were proposed. 

Recently, sparsity theory was introduced into shape prior modeling by [9, 10]. In 
their model, a sparse composition of training shapes is computed adaptively to in-
fer/refine an input shape. Thus, it was named as Sparse Shape Composition model. 
With such a setting, it is capable of modeling complex shape variations, and preserv-
ing local details very well. Furthermore, when modeling a sparse error vector, it be-
comes quite robust to sparse non-Gaussian errors. 

However, most of existing models are focusing on single shape prior modeling, 
and not directly applicable to deal with multiple shapes due to the lack of prior co-
dependency information utilization. Such co-dependency among different shapes is of 
great value for various medical image analysis tasks. For instance, the implicit spatial 
relationship between endocardium and epicardium of left ventricle can be utilized as a 
supplementary to their shape priors for accurate localization or segmentation purpose. 
Endocardium and epicardium of left ventricle are very important for quantitative 
analysis of global and regional cardiac function, such as ejection fraction (EF), left 
ventricle myocardium mass (MM), and stroke volume (SV) [11]. In Fig.1 a 2D in-
stance from cardiac cine-MR short axis images is shown.  

Inspired by [9], we present an extension of SSC which aims at dealing with multi-
shape prior modeling. In our method, multiple interested shapes are regarded as a 
group, and modeled together by a sparse linear combination of training groups. With 
such a mechanism, the a-priori spatial constraint among different shapes is also im-
plicitly applied. It has the same advantages of SSC, due to the utilization of the same 
basic idea and optimization framework proposed in SSC.  

  
Fig. 1. Left: 2D cardiac cine-MR short axis image. Right: Manually delineated endocardial 

contour (drawn as green) and epicardial contour (drawn as red) of left ventricle. 



2 Improved  Sparse Shape Composition model 

Our model aims at modeling any number of complicated shapes simultaneously with 
a pre-defined training repository. Shapes may refer to shapes of different objects (e.g., 
shapes of femur bone, femur cartilage, tibia bone and tibia cartilage of one patient) or 
shapes of a time-varying object (e.g., shapes of heart), and regarded as a group in our 
method. The details of how we advanced SSC to our method will be presented in this 
section. 
2.1 From shape representation to group representation 

Following SSC, explicit parametric shape representation1 is employed in this method. 
Specifically, shape instance is represented by a column vector concatenated by coor-
dinates of all its vertices. For instance, column vector 𝑠𝑠ℎ𝑎𝑝𝑒 of a 3D mesh which 
contains 100 vertices is concatenated as Eq. (1).  

Let 𝑚𝑚 represents the number of shapes required to be modeled. Vertex number and 
column vector of the 𝑖th shape are notated by 𝑘𝑖  and 𝑠𝑠ℎ𝑎𝑝𝑒𝑖 ∈ ℝ𝑘𝑖×𝑑  respectively, 
where 𝑑 stands for the dimension of shapes. Then, a column vector 𝑔𝑔 which repre-
sents the group consisted of these 𝑚𝑚  shapes can be constructed by concatenating 
𝑠𝑠ℎ𝑎𝑝𝑒𝑖 for 𝑖 = 1,2, … ,𝑚𝑚, as shown in Eq. (2). 

 𝑠𝑠ℎ𝑎𝑝𝑒 ≜ [𝑥1 𝑦1 𝑧1 𝑥2 𝑦2 𝑧2 … 𝑥100 𝑦100 𝑧100]𝑇 (1) 

 𝑔𝑔 ≜ �𝑠𝑠ℎ𝑎𝑝𝑒1𝑇  𝑠𝑠ℎ𝑎𝑝𝑒2𝑇  …   𝑠𝑠ℎ𝑎𝑝𝑒𝑖𝑇�
𝑇
∈ 𝑅∑ 𝑘𝑖 𝑖 × 𝑑 (2) 

2.2 Matrix of training repository 

Assume there are 𝑛𝑛 group samples with manual delineation in the training repository, 
which are quite sufficient to model variations of shapes and the spatial relationship 
among them. A matrix which represents the training repository can be constructed 
based on these samples. An illustration can be found in Fig. 2. It should be noticed 
that there should be a consistency among columns through this matrix. Specifically, 
vertex numbers of 𝑚𝑚 shapes should keep consistent, and shape vertices should be one-
to-one corresponding through these groups. Two methods are introduced to acquire 
consistency of shapes in [9]. Both of them can be extended to groups quite intuitional-
ly. We assume this consistency is already achieved here. 

After the conversion of all these groups into column vectors, apply pre-alignment 
to eliminate the position and orientation difference and transform them into a standard 
coordinate system. Pre-alignment is a two-step procedure based on the generalized 
Procrustes analysis [12]: first, select a group vector as reference and align others to it, 
take the transformed vectors and the reference vector as initial aligned groups; se-
cond, in order to remove the bias caused by the selection of reference, compute the 
mean vector of these initial aligned groups, take it as the new reference and align 

1  2D and 3D shapes are represented by curves or meshes composed of a number of vertices.  
                                                           



others to it to get the final aligned groups. These final aligned groups vectors are no-
tated by 𝑔𝑔�𝑗 for 𝑗 = 1,2, … ,𝑛𝑛. Shape vectors of 𝑔𝑔�𝑗 are notated as �̃�𝑠𝑗𝑖 for 𝑖 = 1,2, … ,𝑚𝑚. 

Finally, aligned group vectors are assembled together parallelly to concrete the ma-
trix of training repository which is denoted as 𝐷 = [𝑔𝑔�1 𝑔𝑔�2 … 𝑔𝑔�𝑛]. 

. . .

𝑔𝑔�1 

...

�̃�𝑠1
1 

�̃�𝑠1
2 

�̃�𝑠1
𝑚𝑚  

. .
 .

𝑔𝑔�2 

...

�̃�𝑠2
1 

�̃�𝑠2
2 

�̃�𝑠2
𝑚𝑚  

. .
 .

𝑔𝑔�𝑛𝑛  

...

�̃�𝑠𝑛𝑛1 

�̃�𝑠𝑛𝑛2 

�̃�𝑠𝑛𝑛𝑚𝑚  

. .
 .

 
Fig. 2. Diagram illustrating the matrix of training repository. 

2.3 Problem formulation and optimization framework 

The basic idea of SSC can be intuitionally extended to groups: for any input group 
𝑦𝑔 = [𝑦1𝑇  𝑦2𝑇 … 𝑦𝑚𝑇]𝑇 , an optimal sparse linear combination of existing training 
groups can be found to approximately represent it. The weights or coefficients are 
denoted as 𝑥 ∈ 𝑅𝑛, and the optimal value of it is denoted as 𝑥𝑜𝑝𝑡 ∈ 𝑅𝑛. 𝑥𝑜𝑝𝑡 is found 
by solving Eq. 3 utilizing the optimization method proposed in [9]. 

 𝑎𝑟𝑔𝑔min𝑥,𝑒,𝛽�𝑇�𝑦𝑔,𝛽� − 𝐷𝑥 − 𝑒�
2

2 , 𝑠𝑠. 𝑡.  ‖𝑥‖0 ≤ 𝑘1,  ‖𝑒‖0 ≤ 𝑘2  (3) 

2.4 Difference from SSC 

When modeling 𝑚𝑚 shapes from a group, SSC required to be conducted for 𝑚𝑚 times. 
Each time an optimal sparse weight vector is computed for a single input shape. 
Compared with the unique optimal weight vector 𝑥𝑜𝑝𝑡 calculated based on our meth-
od, these 𝑚𝑚 vectors tend to differ from each other in practice. Thus, group constraint 
or co-dependency among different shapes is not utilized in the modeling process. 



3 Endocardium and epicardium localization 

Following the organ localization framework proposed in [9], we conducted an exper-
iment to verify our method, i.e., left ventricular endocardium and epicardium localiza-
tion from 2D cardiac cine-MR images [12], and compared it with the original SSC. In 
this experiment, endocardium and epicardium are regarded as a group and localized 
simultaneously; training repository is consisted of 15 groups from different patients; 
91 images from 28 patients are tested. 

3.1 Details of localization experiment 

This experiment is focusing on the 2D images with papillary muscles, for the con-
venience of achieving consistency of group vectors. These images are capable of de-
fining 8 landmarks through centers of the two largest papillary muscles. Two intersec-
tion points of the line which passes through these centers and the manual endocardial 
contour, are considered as endocardium landmarks; then, the midperpendicular of 
these landmarks can be found, which intersect with endocardium at the last two endo-
cardium landmarks. The epicardium landmarks are defined in the same method. After 
the determination of landmarks, a certain number of vertices are interpolated between 
two neighboring landmarks along both manual contours to form the group vectors in 
the training matrix. In our experiment, the vertex number of endocardial contour in a 
group vector is 50, and 70 for epicardial contour. Two training samples from the re-
pository are shown in Fig. 3. After the determination of landmarks and group vertices, 
the matrices of training landmarks and groups can be formed based on the method 
described in section 2.1 and 2.2, and notated as 𝐷𝐿  and 𝐷𝐺 . 

 
Fig. 3. Two images with papillary muscle centers, landmarks, endocardium and epicardium 

contour vertices. 

Given a testing image, the localization procedure is as follows: first, manually la-
beling its landmarks, notated as 𝑦𝐿; then, 𝑥𝑜𝑝𝑡 and 𝛽𝑜𝑝𝑡 are computed by optimizing 



Eq. (3) with 𝐷𝐿  and 𝑦𝐿; at last, transforming 𝐷𝐺𝑥𝑜𝑝𝑡 back to the coordinate system of 
testing image as the group location. 

In order to compare our method with the original SSC, SSC was also employed in 
the same localization framework with same training data and input landmarks to sepa-
rately localize the endocardium and epicardium of left ventricle. 

3.2 Evaluation and comparison 

Evaluation 
In addition to visual evaluation of localization accuracy, three quantitative measures 
are employed: average perpendicular distance (APD) [12], standard deviation of per-
pendicular distances (SPD), and dice metric (DM) [13]. As the name implies, APD 
and SPD measures the perpendicular distances from points on the localization result 
to manual contour, and calculate the average and standard deviation of them. Higher 
APD or SPD implies that localization result doesn’t match closely to the manual con-
tour. DM measures the overlap rate of the areas surrounded by localization and manu-
al contour. It ranges between 0 and 1, with higher DM indicating better match. 

Comparison 
Accuracy and robustness of endocardium and epicardium localization based on our 

method and the original SSC are compared in this section. Three localization cases 
from different patients are shown in Fig. 4. The left column shows a case that both 
SSC and our method achieve acceptable result. The middle column shows a case that 
SSC fails in the localization, whereas our method still performs well. The right col-
umn shows an extreme case that neither method locates the endocardium and epicar-
dium accurately due to the insufficiency of training samples, which is quite rare in our 
experiment. Despite the failure in the third case, our method outperforms the original 
SSC in all three cases from both visual and quantitative point of view. Furthermore, in 
order to compare them from the big picture, global APD, SPD and DM of our method 
and SSC are calculated statistically on 91 testing images, as shown in Table 1.  

Table 1. Global APD, SPD and DM 

Measures 
SSC Improved SSC 

Endocardium Epicardium Endocardium Epicardium 
Global APD 3.3554 2.7553 2.3493 2.2032 
Global SPD 2.4982 1.9412 1.6836 1.5741 
Global DM 0.8766 0.9224 0.9124 0.9363 

From the evidence provided in Fig. 4 and Table 1, we can reasonably arrive at a 
conclusion that our method can achieve more accurate and stable localization in this 
study compared with SSC. 



 

 

 

 
Fig. 4. Three localization cases. First and second row: endocardium and epicardium localiza-

tion utilizing SSC. Third and fourth row: endocardium and epicardium localization utilizing our 
method. 



4 Conclusion 

In this paper, we proposed an extension of Sparse Shape Composition model for 
multi-shape prior modeling. In our method, multiple interested shapes from one pa-
tient are regarded as a group and modeled together to incorporate the co-dependency 
among different shapes. It is validated on a 2D endocardium and epicardium localiza-
tion task, and exhibits more accurate and stable performance compared with original 
SSC. The success of our method is mainly relying on the incorporation of co-
dependency among shapes. 

In the future, we intend to apply this extension to various multi-shape segmentation 
tasks in clinical practices, especially to 3D shape sequences of time-varying organs. 
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