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Abstract. This paper presents a novel method that combines kernel-
ized dictionary learning and group sparsity to efficiently cluster white
matter fiber tracts obtained from diffusion Magnetic Resonance Imag-
ing (dMRI). Instead of having an explicit feature representation for the
fibers, this method uses a non-linear kernel and specialized distance mea-
sures that can better learn complex bundles. Through the use of a global
sparsity prior, the method also provides a soft assignment of fibers to
bundles, making it more robust to overlapping fiber bundles and out-
liers. Furthermore, by using a group sparsity prior, it can automatically
discard small and uninteresting bundles. We evaluate our method both
qualitatively and quantitatively using expert labeled data, and compare
it with state of the art approaches for this task.

1 Introduction

Due to its ability to infer the orientation of white matter fibers in-vivo and non-
invasively, diffusion tensor imaging (DTI) has become an essential tool to study
the microstructure of white matter in the brain. While extracting the individual
fiber tracts from DTI data, a process known as tractography, is important to
visualize the connection pathways in the brain, this process typically produces
a large number of tracts which makes their analysis complex. To facilitate this
analysis, it is often necessary to group the individual tracts into larger clusters,
called bundles.

Methods proposed for the fiber clustering problem can be categorized in
terms of the features and distance measures used to group the fibers into bundles.
Features proposed to represent fibers include the distribution parameters (mean
and covariance) of points along the fiber [2] and B-splines [11]. Approaches using
such explicit features typically suffer from two problems: they are sensitive to the
length and endpoint positions of the fibers and/or are unable to capture their
full shape. Instead of using explicit features, fibers can also be compared using
specialized distance measures. Popular distance measures for this task include
the Hausdorff distance, the Minimum Direct Flip (MDF) distance and the Mean
Closest Points (MCP) distance [3, 12]. Fiber clustering approaches can also be
divided with respect to the clustering methods used, which include manifold
embedding based approaches like spectral clustering and normalized cuts [2],
agglomerative approaches like hierarchical clustering [3], k-means, and k-nearest



neighbors [12]. Several studies have also focused on incorporating anatomical
features into the clustering [14] and on clustering large multi-subject datasets
[9].

Recently, several researchers have studied the connection between clustering
and factorization problems like dictionary learning [15] and non-negative ma-
trix factorization [10]. For instance, dictionary learning has been shown to be
a generalization of the traditional clustering problem, in which objects can be
assigned to more than one cluster. In fiber clustering, such soft assignments are
desirable since fiber bundles often overlap each other. Using a soft clustering, in-
stead of hard one, can also make the method more robust to outliers (e.g., false
fibers generated during tractography) that do not belong to any real cluster.
Moreover, researchers have also recognized the advantages of applying kernels
to existing clustering methods, like the k-means algorithm [4], as well as to dic-
tionary learning approaches [13]. Such “kernelized” methods better capture the
non-linear relations in the data.

The major contribution of this paper is a novel fiber clustering approach
based on kernelized dictionary learning. By modeling the fiber clustering task as
a dictionary learning problem, this approach provides a soft assignment of fibers
to bundles, which makes it more robust to overlapping bundles and outliers.
Furthermore, through the use of a non-linear kernel, it avoids the need to specify
explicit features for the fibers, and can facilitate the separation of clusters in a
manifold space. Also, by having both a global and group sparsity prior, our
approach can control the minimum membership of fibers to bundles as well as
the size of these bundles. This makes it more robust to the selection of the
number of clusters in the output, a parameter which can be hard to tune, and
allows it to automatically discard insignificant clusters. To our knowledge, this
work is the first to combine group sparsity and kernelized dictionary learning.
Our results on the fiber clustering problem show the potential of this approach
for other medical imaging applications.

2 The proposed approach

2.1 The clustering problem

Before presenting our proposed approach, we first define the clustering problem
and underline its link to dictionary learning. Let X ∈ Rd×n be the data matrix
of n fibers, where each column contains the feature vector xi ∈ Rd of a fiber
tract i. The traditional (hard) clustering problem can be defined as assigning
each fiber to a bundle from a set of k bundles, such that fibers are as close
as possible to their assigned bundle’s prototype (i.e., cluster center). Let Ψk×n

be the set of all k×n cluster assignment matrices (i.e., matrices in which each
row has a single non-zero value equal to one), this problem can be expressed as
finding the matrix D of k bundle prototypes and the fiber-to-bundle assignment
matrix W that minimize the following cost function:

min
D∈Rd×k
W∈Ψk×n

1

2
||X −DW ||2F . (1)



This formulation of the clustering problem can be seen as a special case of
dictionary learning, where D is the dictionary and W is constrained to be a
cluster assignment matrix, instead of constraining its sparsity.

While solving this clustering problem is NP-hard, optimizing W or D in-
dividually is easy. Thus, for a given dictionary D, the optimal W assigns each
fiber i to the prototype k closest to its feature vector:

wki =

{
1 : if k = arg mink′ ||xi − dk′ ||2,
0 : otherwise.

(2)

Likewise, for a fixed W , the optimal dictionary is found by solving a simple
linear regression problem:

D = XW>(WW>)−1
. (3)

This suggest the following heuristic: starting with a dictionary containing a ran-
dom subset of the columns of X, optimize D and W alternatively, until conver-
gence.

This clustering problem and simple heuristic correspond to the well-known
k-means algorithm. With respect to dictionary learning, the dictionary update
step described above is known as the Method of Optimal Directions (MOD) [1].
Although k-SVD [1] could also be used for this task, this technique focuses on
learning large dictionaries efficiently and sacrifices the optimality of the dictio-
nary update step to do so. In our case, the dictionary size corresponds to the
number k of bundles (i.e., clusters), which is quite small in comparison to the
number of tracts. Thus, updating the dictionary using MOD is quite fast.

2.2 Group sparse kernel dictionary learning

The k-means approach described in the previous section suffers from four im-
portant problems. First, it requires to encode fibers as a set of features, which
is problematic due to the variation in their length and endpoints. Second, it
assumes linear relations between the fibers and bundle prototypes, while these
relations could be better defined in a non-linear subspace (i.e., the manifold).
Third, it performs a hard clustering of the fibers, which can lead to poor results
in the presence of overlapping bundles and outliers. Finally, it may find insignif-
icant bundles (e.g., bundles containing only a few fibers) when the parameter
controlling the number of clusters is not properly set.

To overcome these problem, we present a new clustering method based on
group sparse kernelized dictionary learning. Let φ : Rd → Rq be a fiber mapping
function such that k(xi,xj) = φ(xi)

>φ(xj) corresponds to a similarity kernel.
Moreover, denote by Φ the matrix of mapped fiber tracts, i.e., Φ = φ(X), and
let K = Φ>Φ be the kernel matrix. We reformulate the clustering problem as
finding the dictionary D and non-negative weight matrix W minimizing the
following problem:

min
D∈Rq×k
W∈Rk×n+

f(D,W ) =
1

2
||Φ−DW ||2F + λ1||W ||1 + λ2||W ||2,1 +

λ3

2
||D||2F . (4)



In this formulation, ||W ||1 =
∑K

i=1

∑N

j=1
|wij | is an L1 norm prior which enforces

global sparsity of W , and ||W ||2,1 =
∑K

i=1
||wi·||2 is a mixed L2,1 norm prior

imposing the vector of row norms to be sparse. Concretely, the L1 norm prior
limits the “membership” of fibers to a small number of bundles, while the L2,1

prior penalizes the clusters containing only a few fibers. The Forbenius norm
prior on D is used to avoid numerical problems when W is singular (i.e., when
one or more clusters are empty). Parameters λ1, λ2, λ3 ≥ 0 control the trade-off
between these three properties and the reconstruction error (i.e., the first term
of the cost function).

Using an optimization approach similar to k-means, we alternate between
updating the dictionary D and the weight matrix W . Since the dictionary pro-
totypes are defined in the kernel space, D cannot be computed explicitly. To
overcome this problem, we follow the strategy proposed in [13] and define the
dictionary as D = ΦA, where A ∈ Rn×k. Using this formulation, A can be
computed as follows:

A = W>(WW> + λ3I
)−1

. (5)

Matrix A is initialized as a random selection matrix (i.e., random subset of
columns in the identity matrix), which is equivalent to using a random subset
of the transformed fibers (i.e., subset of columns in Φ) as the initial dictionary.

To updateW , we use an Alternating Direction Method of Multipliers (ADMM)
method. First, we separate the problem in two sub-problems, one considering
only the reconstruction error and the second considering only the (group) spar-
sity terms and non-negativity constraints, by introducing ancillary matrix Z.
The problem can then be reformulated as follows:

min
W∈Rk×n
Z∈Rk×n+

1

2
||Φ−ΦAW ||2F + λ1||Z||1 + λ2||Z||2,1, s.t. W = Z. (6)

We then convert this constrained problem using an Augmented Lagrangian for-
mulation with multipliers U :

min
W ,U∈Rk×n

Z∈Rk×n+

1

2
||Φ−ΦAW ||2F + λ1||Z||1 + λ2||Z||2,1 +

µ

2
||W −Z +U ||2F . (7)

In an inner loop, we update W , Z and U alternatively, until convergence (i.e.,
||W − Z||2F is below some threshold). To update W , we derive the objective
function with respect to this matrix and set the result to 0, yielding:

W =
(
A>KA+ µI

)−1(
A>K + µ(Z −U)

)
. (8)

Optimizing Z corresponds to solving a group sparse proximal problem (see [7]).
This can be done in two steps. First, we do a L1-norm shrinkage by applying
the non-negative soft-thresholding operator to each element of W +U :

ẑij = S+
λ1
µ

(
wij + uij

)
= max

{
wij + uij −

λ1

µ
, 0
}
, i ≤ K, j ≤ N. (9)



Then, Z is obtained by applying a group shrinkage on each row of Ẑ:

zi· = max
{
||ẑi·||2 −

λ2

µ
, 0
}
·
ẑi·
||ẑi·||2

, i ≤ K. (10)

Finally, as in standard ADMM methods, the Lagrangian multipliers are updated
as follows:

U ′ = U +
(
W −Z

)
. (11)

2.3 Algorithm summary and complexity

The clustering process of our proposed method is summarized in Algorithm 1.
In this algorithm, the user provides a matrix Q of pairwise fiber distances (see
Section 3 for more details), the maximum number of clusters k, as well as the
trade-off parameters λ1, λ2, λ3, and obtains as output the dictionary matrix A
and the cluster assignment weights W . At each iteration, W , Z and U are
updated by running at most Tin ADMM loops, and are then used to update
A. This process is repeated until Tout iterations have been completed or the
cost function f(D,W ) converged. The soft assignment of W can be converted
to a hard clustering by assigning each fiber i to the bundle k for which wik is
maximum.

The complexity of this algorithm is mainly determined by the initial ker-
nel computation, which takes O(n2) operations, and updating the assignment
weights in each ADMM loop, which has a total complexity in O(Tout ·Tin ·k2 ·n).
Since Tout, Tin and k are typically much smaller than n, the main bottleneck
of the method lies in computing the pairwise distances Q used as input. For
datasets having a large number of fibers (e.g., more than n = 100, 000 fibers),
this matrix could be computed using an approximation strategy such as the the
Nyström method [6].

3 Experiments

We evaluated the performance of our proposed method on a dataset of expert
labeled bundles, provided by the Sherbrooke Connectivity Imaging Laboratory
(SCIL). The source dMRI data was acquired from a 25 year old healthy right-
handed volunteer and is described in [5]. We used 10 of the largest bundles,
consisting of 4449 fibers identified from the cingulum, corticospinal tract, supe-
rior cerebellar penduncle and other prominent regions. Figure 2(b) shows the
coronal and sagittal plane view of the ground truth set.

Although our method has several parameters, only two of them require data
specific tuning: λ1 and λ2. The RBF kernel parameter γ depends on the distance
measure used, not the dataset. For these experiments, we used the Mean Closest
Points (MCP) distance [3] to compute the pairwise fiber distances Q, and set
γ to 0.01. Also, λ3 and µ correspond to regularization parameters and should
be set to a small positive value. In our experiments, we have used λ3 = 10−6

and µ = 0.01 for these parameters. According to Eq. 9, λ1/µ corresponds to a
minimum threshold for the assignment weights. As shown in Figure 1(a), this



Algorithm 1: ADMM method for group sparse kernelized clustering

Input: Pairwise fiber distance matrix Q ∈ Rn×n;
Input: The maximum number of fiber bundles k;
Input: The RBF kernel parameter γ;
Input: The cost trade-off parameters λ1, λ2, λ3 and Lagrangian parameter µ;
Input: The maximum number of inner and outer loop iterations Tin, Tout;
Output: The dictionary A ∈ Rn×k and assignment weights W ∈ Rn×k+ ;

Initialize the kernel matrix: kij = exp(−γ ·q2ij);
Initialize A as a random selection matrix and tout to 0;

while f(D,W ) not converged and tout ≤ Tout do

Initialize U and Z to all zeros and tin to zero;

while ||W −Z||2F not converged and tin ≤ Tin do

Update W , Z and U :

W ←
(
A>KA + µI

)−1(
A>K + µ(Z −U)

)
;

ẑij ← max
{
wij + uij −

λ1

µ
, 0
}
, i ≤ K, j ≤ N ;

zi· ← max
{
||ẑi·||2 − λ2

µ
, 0
}
·

ẑi·
||ẑi·||2

, i ≤ K;

U ← U +
(
W −Z

)
;

tin ← tin + 1;

Update dictionary: A ← W>(WW> + λ3I
)−1

;
tout ← tout + 1;

return {A,W } ;

value can be used to control the mean number of non-zero weights per fiber (i.e.,
how soft or hard is the clustering). Likewise, λ2/µ is a minimum threshold on
the total membership to a bundle and, as shown in Figure 1(b), controls the size
of bundles in the output. Finally, following the convergence rate shown in Figure
1(c), we have used Tout = 20 for the maximum number of iterations. The same
value was used for the number of inner loop iterations (i.e., Tin = 20).

Figure 2(a) shows the mean Adjusted Rand Index (ARI) [12] obtained by
our method, denoted by MCP+L1+L21, over 5 runs with different random ini-
tializations. We compared this method with two well-known fiber clustering ap-
proaches: QuickBundles (QB) [8] and Normalized cuts (Ncuts) [2]. QuickBun-
dles recursively groups fibers between which the Minimum Direct Flip (MDF)
distance is below a specified threshold. Ncuts performs a spectral embedding
of the fibers encoded as the mean and covariance parameters of the points dis-
tribution, and then clusters the embedded fibers using a recursive partitioning
strategy or k-means. Based on earlier results, we used 25 eigenvectors for the
embedding and k-means for clustering. We also tested our method without the
group sparsity prior (i.e., using λ2 = 0) and called MCP+L1 this simplified
model.
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Fig. 1: (a) Mean number of non-zero assignment weights per fiber, for λ2/µ = 80
and increasing λ1/µ. (b) Mean number of fibers per bundle, for λ1/µ = 0.1 and
increasing λ2/µ. (c) Cost function value at each iteration of a sample run.
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Fig. 2: (a) Mean ARI of QB, Ncuts, MCP+L1 (λ1/µ = 0.1, λ2/µ = 0) and
MCP+L1+L21 (λ1/µ = 0.1, λ2/µ = 80), for increasing k. (b)-(c) Ground truth
bundles and clustering output of MCP+L1+L21 for k = 20. (d) Distribution of
bundle sizes corresponding to this output.

From these results, we see that Ncuts performs worse than all other methods.
This is possibly due to the fact that the features used to encode the fibers
do not fully capture their shape. Moreover, we observe that the peak ARI of
QuickBundles is similar to that of MCP+L1, but the latter peaks closer to the
true number of bundles (i.e., 10). Finally, we see that the MCP+L1+L21 method,
which also considers group sparsity, obtains the highest ARI and is less sensitive
to the value of k given as input. The bundles obtained by this method for k = 20
are presented in Figure 2(c). As shown in Figure 2(d), this clustering contains
the same number of clusters as the ground truth, even though the maximum
number of clusters was set to k = 20.

4 Conclusion

We have presented a new fiber clustering approach based on dictionary learning.
This approach uses a non-linear kernel which avoids having to define features
for the fibers and can represent complex bundles. Furthermore, by using an L1

norm prior, instead of hard clustering constraints, it is more robust to overlap-



ping bundles and outliers. Finally, since it also includes a group sparsity prior,
our approach can find more interesting bundles than other methods for this task.
Experiments conducted on expert labeled data show our methods to outperform
state of the art fiber clustering approaches such as QuickBundles and Normal-
ized Cuts. In future work, we will extend the proposed model to incorporate
anatomical information in the form of atlases.
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