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Abstract. This paper presents a framework for 3D left ventricle reconstruction
using sparse magnetic resonance (MR) images with different orientations. Due
to the inadequate inter-slice resolution, both short- and long-axis cardiac MR
images are commonly acquired to reveal the left ventricle shape and motion. The
contours in these images show different profiles of left ventricle and contain its
essential shape information. In this paper, we propose a new deformable model to
segment left ventricle on 2D slices with different orientations, and reconstruct its
3D model that matches all the contours in the images. An alternating optimization
algorithm is proposed to efficiently solve the problem. The framework is applied
on mouse cardiac MR data and shows promising results.

1 INTRODUCTION

In recent years, magnetic resonance imaging (MRI) is frequently used for the analysis
of cardiac function. It enables the generation of 3D deformable models of the heart,
from which accurate diagnostic information can be derived. However, it is hard to ac-
quire high-resolution 3D cardiac MR images in animals due to the fast beating heart and
the breathing, especially from the experimental small animals, like a mouse. The mouse
heart is about 1000th the size of a human heart and beats much faster, at 400-600 beats
per minute (bpm), than a human heart, with 60-80 bpm. Although currently available
MRI instruments for mouse imaging operate at a higher magnetic field strength (4.7T or
above) than clinical MRI scanners, they are still unable to provide adequate spatial reso-
lution in 3D. In practice, only sparse good quality images on a few short- and long-axis
slices are acquired to visualize the cardiac motion. They provide enough information
for experts to visually analyze the cardiac motion, while it is still very challenging to
reconstruct a 3D heart model based on these sparse slices [15].

Most of the previous work focuses on left ventricle reconstruction based on short-
axis [9–11]. Since the short-axis images are parallel to each other, they are usually
combined to a 3D volume. However, due to the limited number of slices, the inter-slice
resolution is usually much lower than intra-slice directions. The distance between slices
is about 10 times the pixel distance inside each slice. During the MR image acquisition,
the long-axis images usually are first generated to localize the heart position, while
they are rarely used for the segmentation for the left ventricle [5, 12]. These images
have higher resolution in the long axis, which can help overcome the low inter-slice
resolution on short-axis images. Therefore, we utilize both short- and long-axis MR
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(a) Short axis image (b) Long axis image (c) 3D embedded view

Fig. 1: The mouse left ventricle has a ring shape on the short-axis images (a) and a
U shape on the long-axis images (b). By mapping them to the 3D anatomic space,
they intersect with the reconstructed left ventricle model exactly on the left ventricle
boundaries (c).

images simultaneously in this work for 3D left ventricle reconstruction. Each image at
different position provides different contours of the model. Meanwhile, the consistency
among them improves the robustness of the reconstruction.

The short- and long-axis images are instances of the same volume of different orien-
tations. Fradkin et al. [6] utilized their consistency to infer the short-axis image position
based on the long-axis segmentation result. However, the spatial relationship is only
used for initialization. The short-axis contours are then deformed independently. The
contours after deformation may be inconsistent with the long-axis ones. Koikkalainen
et al. [7] reconstructed a 3D heart model based on parallel MR images from the short
and long axes. Different from usual long-axis slices, which are radially placed, they
acquired parallel images in the long axis. The slices with different orientations are con-
sidered as volume data of the same region with different resolutions. A reference model
is registered with them simultaneously to overcome the insufficient sampling for each
single volume data. Since most long-axis images are not parallel in MR acquisition,
their method will require on additional protocol for heart reconstruction. van Assen et
al. [1] proposed a left ventricle reconstruction algorithm based on multiple shape priors.
Based on active shape models (ASMs), they first build a point distribution model from
training shapes, and then fit this model to all the 2D images to refine the segmentation.
The images generate forces on the intersection of the 3D model with the corresponding
2D plans. Similarly, sparse shape composition [16] is used to represent shape models
based on sparse reconstruction. The methods, like ASM, represent the shapes based on
a large number of training samples, but the training shapes are not always available in
clinical applications.

To address the limitations in previous efforts to incorporate 2D slices with arbi-
trary orientations for 3D left ventricle reconstruction, we introduce a new reconstruc-
tion framework. The main contributions of the work are as follows. First, all the slices
are segmented simultaneously with a 3D left ventricle model. The 2D contours are just
the projection of the model on the corresponding images, so we handle the inconsis-
tency among all the contours, i.e., the short- and long-axis contours are not exactly
intersected. Second, there are no restrictions on the position and orientation of each s-
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lice. Any additional slice will help improve the segmentation accuracy and robustness.
Third, only an elastic shape prior [4] is required in our framework. The reference shape
can be generated with one sample data or built manually by expert without any sam-
ple. Different from the methods based on multiple shape priors, which ensure that the
shape follows a point distribution model, we constrain the non-rigid deformation of the
reference shape. The 3D shape regularization term is integrated into all the 2D image
segmentations to form a unified problem, which is efficiently solved by our proposed
alternating optimization algorithm.

2 METHODOLOGY

Given a group of 2D cardiac MR images Ii, which have known transformations Ti to
the 3D anatomical coordinate system, we expect to reconstruct a 3D left ventricle shape
model T (Sre f ), where Sre f is a reference left ventricle model and T is a non-rigid trans-
formation. The projection of the reconstructed model T (Sre f ) onto image Ii is defined
as Pi(T (Sre f )). It should match with the left ventricle area in the image. The fitness of
the model to each image Ii is measured by the energy function Eimg. Since the slices
are sparse in the 3D volume, the reconstruction problem is under constrained with only
the image information. Therefore, we further assume the model is deformed from the
reference model Sre f with a smooth non-rigid deformation T . The model reconstruction
is formulated as the following optimization problem:

min
T
{∑

i
Eimg(Pi(T (Sre f )), Ii)+ γR(T )} (1)

where Eimg is the energy term for the fitness to each image Ii, R(T ) is the regularization
term for the deformation T and γ is a trade-off parameter.

The image energy term Eimg is defined based on both the shape and appearance
information. The conventional active contour models focus only on the boundaries of
the models. They deform the contours to fit locations that have high probabilities to
be boundaries. In our model, we also consider the appearance of the interior region.
The appearance statistics are adaptively learned during the deformation. The model is
updated based not only on the edge information, but also the region statistics to ensure
the appearance consistency of the new territory. The region-based deformable model
is defined based on free form deformation. Instead of deformable contours, the whole
interior region is deformed to optimize both the edge and the region energy function:

Eimg = Eedg +µEreg (2)

where Eedg is the edge energy term, Ereg is the region energy term and µ is a constant
that balances the contributions from the two terms. In our formulation, we are able to
omit the model smoothness term in 2D images since the whole model smoothness is
regularized by the smooth non-rigid transformation of the 3D model.

The model is attracted to edge feature with high image gradient via the edge energy
term Eedg. A distance map to the edge feature is built based on gradient vector field [14].
The edge force moves the contour to the minimum of the distance map. Therefore, the
edge energy term Eedg is defined as:
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Fig. 2: The pipeline of our 3D left ventricle system. The 3D surface model is deformed
from a reference model to fit 2D contours, while the 2D contours is constrained by both
image cues and 3D model prior. They are updated alternatingly to reconstruct the left
ventricle model.

Eedg =
∫

C
Φ(x)dx (3)

where C is the contour in a 2D image and Φ is the distance map function.
The probability of each pixel belonging to the model is defined based on the inte-

rior intensity distribution from last iteration. The region energy term deform the model
toward areas with high probability. It is defined as:

Ereg =
∫

R
logP(x)dx (4)

where R is the interior region of the contour and P is the probability of each pixel as the
interior region of the model.

The 2D contours are projections of one 3D left ventricle model to the corresponding
images. Therefore, different from the 2D deformation regularization term in previous
segmentation algorithms, we employ a 3D shape prior to constrain all the 2D segmenta-
tions simultaneously. The 3D model is defined based on the deformation of a reference
left ventricle model T (Sre f ). We regularize the non-rigid deformation T to ensure that
the new model is still similar to the reference one. The smoothness of transformation T
is defined as:

R(T ) =
∫
R3

T̃ (x̃)
G̃(x̃)

dx̃ (5)

where G is Gaussian kernel function and G̃ is its Fourier transform. Function T̃ indi-
cates the Fourier transform of the deformation function T and x̃ is a frequency domain
variable. Gaussian kernel is used as a low-pass filter to regularize the high frequency
part of the deformation and enforce the smoothness.
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Algorithm 1 3D left ventricle reconstruction
Input: The sparse images Ii with arbitrary orientation, and the reference left ventricle model
Sre f
Output: The data-specific 3D left ventricle model
Initialize the 2D contours Ci with graph cuts
repeat

Transform the contours Ci to 3D anatomic space
Deform the 3D reference model Sre f based on (7)
Find the model-plane intersections Pi(T (Sre f ))
Deform the contours Ci based on (8)

until Ci and T converge.

2.1 Deformable Model Implementations

The image forces are only defined on the intersection of the model in each plane. They
are not applied directly to the vertices of the model. Therefore, we introduce the con-
tours of the left ventricle on the images Ci and reformulate the energy function as:

min
Ci,T
{∑

i
[Eimg(Ci, Ii)+λD(Ci,Pi(T (Sre f )))]+ γR(T )} (6)

where D is the distance between the contour Ci and the projection of the left ventricle
model Pi(T (Sre f )). In this formulation, instead of deforming the reference model direct-
ly, the image forces only deform the 2D contours. Therefore, the whole energy function
is separated into two parts. The 2D contours and the 3D model can be optimized alter-
natingly with Algorithm 1.

We initialize the 2D segmentation via graph cuts [2, 3]. It is very effective to gen-
erate a coarse segmentation, while it requires lots of interaction to refine the result. In
our work, we use a two-stage segmentation for short-axis images based on its donut
shape [13]. We use only a few strokes to indicate the blood pool. Then the left ventricle
is automatically segmented with no further interaction. Furthermore, the long-axis im-
ages are also segmented via graph cuts, which initialized based on its relative position
with short-axis images. The regional segmentation results on all the images are then
translated into boundary ones and refined by Metamorphs [13].

The initial contours are first transformed to the 3D anatomic space. Then assuming
the contours Ci are fixed, the reference left ventricle model is deformed to the contours.
The energy function is reduced to:

min
T
{λ ∑

i
D(Ci,Pi(T (Sre f )))+ γR(T )} (7)

We use coherent point drift [8] to optimize (7). The result model maintains the shape
of the reference model, and balances the differences among the contours in different
slices.

The deformed model T (Sre f ) is then projected to the 2D spaces. We use them as
shape priors and optimize the contours Ci. In this step, the energy function is indepen-
dent for each slice:



6 3D Mouse Left Ventricle Reconstruction using Sparse MR Images

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3: (a) The initial label for graph cuts, (e) the blood pool segmentation result, (b,
f) the left ventricle region (green) from graph cuts on both short- and long-axis im-
ages, (c, g) the boundaries based on graph cuts and (d, h) the finial result based on our
framework.

min
Ci
{Eimg(Ci, Ii)+λD(Ci,Pi(T (Sre f )))} (8)

where the distance function D are defined by the distance maps of the model projection
on the slices. This will make the contours more consistent with the left ventricle model.

During the alternating optimization, the parameter λ will increase to further enforce
the consistency between the left ventricle model and all the contours. When λ →∞, the
alternating algorithm (6) will converge to (1).

3 EXPERIMENTS

We test our reconstruction algorithm on mouse cardiac MR images. Sparse short- and
long-axis images are acquired from the C57BL/6 mice. For each data, there are four to
six short-axis slices that are parallel to each other with equal intervals, and four long-
axis slices that are radially spaced every 45◦. Their positions in the anatomic space are
recorded during the acquisition.

We use a few strokes inside and outside the blood pool area, as shown in Fig. 3a,
to initialize the segmentation, and get the blood pool area in Fig. 3e. This step is rel-
atively stable due to the high intensity difference between the blood and heart wall.
Then the region just outside the blood pool is set as the left ventricle. Graph cuts is
used to produce a rough segmentation of the left ventricle on both short- and long-axis
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(a) Initial contours (b) Result contours (c) Result model

Fig. 4: (a) The initial 2D contours mapped onto 3D anatomic space, (b) the result con-
tours after deformation based on our framework and (c) the resulted 3D model embed-
ded onto a long-axis image.

images. The result of this step often leaks out to other tissues due to the similar in-
tensity among them (Fig. 3b, f). It consequently affects the corresponding boundaries
refined by Metamorphs, which cannot correct the region with heavy leak (Fig. 3c, g).
Our proposed deformable model overcome these problems with 3D shape constraints.
It achieves better segmentation result in 2D images (Fig. 3d, h).

We apply our alternating reconstruction algorithm to generate 3D left ventricle mod-
el based on the initial 2D contours. It is noticeable in Fig. 4a that the contours from the
short- and long-axis images do not intersect with each other based on only 2D informa-
tion. Our model introduces a 3D shape model to regularize all the contours. It improves
the the 2D segmentation results on different slices (Fig. 3d, h). Meanwhile, different
from the initial contours projected into anatomic space, the our results balance their
differences and make them consistent with each other (Fig. 4b). The 3D left ventricle
model is also constructed based on our model. It is embedded into a long axis image in
Fig. 4c. The model is smooth and match left ventricle wall in the image.

4 CONCLUSIONS

We have presented a new framework for 3D left ventricle reconstruction using sparse
short- and long-axis images based on only one shape prior. Less MR images are required
to acquire by using our method. This is not only very important for mouse cardiac
imaging, but also desired for human data acquisition, since it will reduce the potential
risk of strong magnetic field and improve the patient’s comfort. In the future, we will
test our framework on human cardiac MR data. Meanwhile, we will introduce a left
ventricle detection module to substitute graph cuts-based initialization and build a fully
automatic system.



8 3D Mouse Left Ventricle Reconstruction using Sparse MR Images

References

1. van Assen, H.C., Danilouchkine, M.G., Frangi, A.F., Ordás, S., Westenberg, J.J.M., Reiber,
J.H.C., Lelieveldt, B.P.F.: SPASM: A 3D-ASM for segmentation of sparse and arbitrarily
oriented cardiac MRI data. Medical Image Analysis 10(2), 286–303 (2006)

2. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts.
IEEE Transactions on Pattern Analysis and Machine Intelligence 23(11), 1222–1239 (2001)

3. Boykov, Y., Jolly, M.P.: Interactive organ segmentation using graph cuts. In: Delp, S.L.,
DiGoia, A.M., Jaramaz, B. (eds.) Medical Image Computing and Computer-Assisted In-
tervention, Lecture Notes in Computer Science, vol. 1935, pp. 276–286. Springer Berlin
Heidelberg (2000)

4. Chen, S., Cremers, D., Radke, R.J.: Image segmentation with one shape prior – A template-
based formulation. Image and Vision Computing 30(12), 1032–1042 (2012)

5. Ciofolo, C., Fradkin, M.: Segmentation of pathologic hearts in long-axis late-enhancement
MRI. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) Medical Image Computing
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