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Preface 
 
The Second International Workshop on Sparsity Techniques in Medical Imaging was 
held in conjunction with the 17th International Conference on Medical Image Computing 
and Computer-Assisted Intervention (MICCAI) on September 14, 2014, in Boston, USA. 
 Compressed sensing and sparse methods have played an important role in the medical 
imaging field, including image reconstruction, image enhancement, image segmentation, 
anomaly detection, disease classification, and image database retrieval. The inherent 
property of sparsity in the medical images and the image database introduces essential 
prior knowledge to facilitate the informatics acquisition, reconstruction and analysis. For 
example, in MR image reconstruction, sparsity in transformed space such as wavelet has 
been successfully used to speed up scanning time and improve reconstruction quality. In 
medial image segmentation, sparse shape prior can preserve the local details that are not 
significant in the training data and correct the misleading appearance cues. In low-dose 
dynamic CT, sparsity in the selection of high-dose patches recovers signal from noisy 
data and improve medical imaging safety by reducing the necessary radiation dose. In 
neuroscience, structured sparsity has been shown to be useful for predict the relevant 
features of brain diseases, such as Alzheimer’s.  
 Leveraging the success of the previous workshops, the 2nd MICCAI workshop on 
Sparsity Techniques in Medical Imaging aimed to provide a comprehensive forum for 
reviewing clinical opportunities in sparsity techniques, and for sharing state-of-art as well 
as emerging techniques for solving computational challenging image analysis and 
imaging problems using sparsity, by bringing together leading researchers and clinical 
scientists from around the world.  
 In response to a call for papers, a total of 23 papers were initially submitted to the 
workshop. These papers underwent a rigorous, double-blind peer-review process, with 
each paper being reviewed by a minimum of 2 reviewers, and in many cases, by 3 expert 
reviewers from the Program Committee. Based on the results of this review, 14 papers 
were accepted by the workshop for presentation. All the accepted papers were revised by 
incorporating the reviewers’ comments and re-submitted by the authors to be included in 
this proceedings volume. 4 papers have been selected for 15-minute podium presentation 
during the 2 plenary oral sessions. The rest 10 papers have been selected for poster 
presentation.   
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 The workshop further provided two plenary lectures, one on sparsity techniques in 
medical imaging, by Dr. Yoram Bresler from University of Illinois, Urbana-Champaign; 
the other on applications to medical image reconstruction and analysis using sparsity, 
dictionaries and patches, given by Dr. Daniel Rueckert from Imperial College London. 
As a result, the workshop successfully provided a forum among participants for the 
dissemination of state-of-art research and technologies, the exchange of emerging ideas, 
the initiation of collaborations, and the exploration of new clinical applications for 
sparsity techniques with dictionary learning in medical imaging and analysis.  
 We would like to express our sincere appreciation to the authors whose contributions 
to this workshop proceeding that have required considerable commitment of time and 
effort. We also thank the members of the Program Committee for their excellent work in 
reviewing the submitted manuscript on tight schedule, and the members of the program 
committee for their outstanding job in organizing and compiling the papers in this 
proceeding volume. 
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Shaoting Zhang 
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About 
 
Scope 
 
Sparsity has been an important modeling tool in compressed sensing, machine learning, 
image processing, neuroscience and statistics. In the medical imaging field, sparsity 
methods have been successfully used in image reconstruction, image enhancement, image 
segmentation, anomaly detection, disease classification, and image database retrieval. 
The inherent property of sparsity in the medical images and the image database 
introduces essential prior knowledge to facilitate the informatics acquisition, 
reconstruction and analysis. For example, in MR image reconstruction, sparsity in 
transformed space such as wavelet has been successfully used to speed up scanning time 
and improve reconstruction quality. In medial image segmentation, sparse shape prior can 
preserve the local details that are not significant in the training data and correct the 
misleading appearance cues. In low-dose dynamic CT, sparsity in the selection of high-
dose patches recovers signal from noisy data and improve medical imaging safety by 
reducing the necessary radiation dose. In neuroscience, structured sparsity has been 
shown to be useful for predict the relevant features of brain diseases, such as Alzheimer’s. 
We have also witnessed significant progress in flexible models to incorporate complex 
feature structure such as structured sparsity and dynamic group sparsity, which 
substantially enhances the model expressiveness and expands the domain of solvable 
problems. Sparsity in large-scale data, which deals with millions or billions of possible 
features or data points, have also been developed to efficiently select the key elements. 
Developing more powerful sparsity models for a large range of medical imaging and 
medical image analysis problems as well as efficient optimization and learning algorithm 
will keep being a main research topic in this field. 
 
Aims 
 
The goal of this workshop is to publish original, high quality papers on innovation 
research and development in the analysis of medical image data using sparsity models 
and methods. This workshop will help advance the scientific research within the field of 
sparsity methods for medical imaging. It will foster dialogue and debate in this vibrant 
field covering Compressed Sensing (CS), Sparse Learning (SL), Sparse Representation 
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(SR) and their applications to medical imaging. It will consist of previously unpublished, 
contributed and invited papers.  
 
Topics 
 
For this workshop, authors are invited to submit original research papers and high-quality 
overview and survey articles on topics including, but not limited to: 
 
Methodology: 
 

• Efficient Sparse Learning 
• Dictionary Learning 
• Shape Prior Modeling 
• Convex Optimization on Sparsity Priors 
• Group Sparsity 
• Structured Sparsity 
• Large-scale Sparse Learning 
• Multi-Source Sparse Learning 
• Statistical Analysis 
• Model Selection, etc. 

 
Applications: 
 

• Image / Signal Reconstruction 
• Image Segmentation 
• Image Enhancement 
• Image Registration 
• Compressed Sensing Magnetic Resonance Imaging 
• Anomaly Detection and Correction 
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Workshop Organization 
 
Organization Committee 
 
Tsuhan Chen     Cornell University, USA 
Ruogu Fang      Florida International University, USA 
Zhi-Pei Liang     University of Illinois at Urbana-Champaign, USA 
Dimitris Metaxas    Rutgers University, USA 
Pina C. Sanelli     Weill Cornell Medical College, USA 
Shaoting Zhang     University of North Carolina at Charlotte, USA 
 
Program Committee 
 
Yoram Bressler     University of Illinois at Urbana-Champaign, USA 
Tom Weidong Cai    University of Sydney, Australia 
James Gee      University of Pennsylvania, USA 
Le Lu        National Institute of Health, USA 
Albert Montillo     General Electronic, USA  
Richardo Otazo     New York University, School of Medicine, USA 
Jens Rittscher     University of Oxford, UK 
Daniel Rueckert    Imperial College of London, UK 
Dinggang Shen     University of North Carolina at Chapel Hill, USA 
Li Shen       Indiana University, USA 
Richard Souvenir    University of North Carolina at Charlotte, USA 
Pascal Spincemaille   Weill Cornell Medical College, USA 
Yi Wang       Cornell University, USA 
Cark-Fredrik Westin   Harvard medical School, USA  
Yves Wiaus      Heriot-Watt University, UK 
Guorong Wu     University of North Carolina at Chapel Hill, USA 
Lin Yang       University of Kentucky, USA 
Yiqiang Zhan     Siemens Healthcare, USA 
Yuanjie Zheng     University of Pennsylvania, USA 
Yan Zhou      Elekta, USA 
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Workshop Program 
 
Plenary Talks: 
Dr. Yoram Bresler, Professor, Department of Electrical and Computer Engineering, 
Department Bioengineering, University of Illinois, Urbana-Champaign   
Talk Title and Abstract: TBD 
 
Dr. Daniel Rueckert, Professor, Department of Computing, Imperial College London 
Talk Title: "Sparsity, Dictionaries and Patches: Applications to Medical Image 
Reconstruction and Analysis"   
Abstract: This talk will focus on the convergence medical imaging and machine learning 
techniques for the discovery and quantification of clinically useful information from 
medical images. The first part of the talk will describe machine learning techniques based 
on sparsity that can be used for image reconstruction, e.g. the acceleration of MR 
imaging. The second part will discuss model-based approaches that employ statistical as 
well as probabilistic approaches for segmentation. In particular, we will focus on 
segmentation techniques that combine patch-based approaches such as dictionary 
learning with sparsity to improve the accuracy and robustness of the segmentation 
approaches. 
 
Oral Presentations:  
Medical Image Analysis with Sparsity 
 Session Chair: Tsuhan Chen, Ruogu Fang 
 [STMI-O-1] Sparsity Based Spectral Embedding: Application to Multi-Atlas 
Echocardiography Segmentation 
 Ozan Oktay, Wenzhe Shi, Jose Caballero, Kevin Keraudren, Daniel Rueckert  
[STMI-O-2] Stain Unmixing in Brightfield Multiplex Immunohistochemistry Images 
 Ting Chen, Chukka Srinivas   
 
Medical Imaging with Sparsity 
Session Chair: Zhi-Pei Liang 
[STMI-O-3] Reduced-dose patient to baseline CT rigid registration in 3D Radon space 
Guy Medan, Achia Kronman, Leo Joskowicz 
[STMI-O-4] Predicting cross-task behavioral variables from fMRI data using the $k$-
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support norm 
Michail Misyrlis, Anna B. Konova, Matthew B. Blaschko, Jean Honorio, Nelly Alia-
Klein, Rita Z. Goldstein, Dimitris Samaras 
 
Poster Presentations: 
[STMI-P-1] Fast MRI for repeated scans 
Lior Weizman, Leo Joskowicz, Dafna Ben Bashat 
[STMI-P-2] Multisite Disease Classification with Functional Connectomes via Multitask 
Structured Sparse SVM 
Takanori Watanabe, Clayton Scott, Chandra Sripada 
[STMI-P-3] Auto-contouring the Prostate for Online Adaptive Radiotherapy 
Yan Zhou, Xiao Han 
[STMI-P-4] Detection of Multiple Sclerosis Lesions using Sparse Representations and 
Dictionary Learning 
Hrishikesh Deshpande, Pierre Maurel, Christian Barillot 
[STMI-P-5] Leveraging Sparsity: A Low-Rank + Sparse Decomposition (LR+SD) 
Method for Automatic EEG Artifact Removal 
Jerome Gilles California, Travis Meyer, P Douglas, PK Douglas 
[STMI-P-6] Group Sparse Kernelized Dictionary Learning for the Clustering of White 
Matter Fibers 
Kuldeep Kumar, Christian Desrosiers 
[STMI-P-7] 3D Mouse Left Ventricle Reconstruction using Sparse MR Images with 
Arbitrary Orientations 
Yang Yu, Jingjing Liu, Dimitris Metaxas, Leon Axel 
[STMI-P-8] Anisotropic Tensor Total Variation Regularization For Low Dose Low CT 
Perfusion Deconvolution 
Ruogu Fang, Tsuhan Chen, Pina Sanelli 
[STMI-P-9] Region segmentation for sparse decompositions: better brain parcellations 
from rest fMRI 
Alexandre Abraham, Elvis Dohmatob, Bertrand Thirion, Dimitris Samaras, Gael 
Varoquaux 
[STMI-P-10] Improved Sparse Shape Composition Model for Multi-shape Prior 
Bing Wang, Chonghao Fan, Hongzhi Xie, Lixu Gu 
 



Sparsity Based Spectral Embedding: Application

to Multi-Atlas Echocardiography Segmentation

Ozan Oktay, Wenzhe Shi, Jose Caballero,

Kevin Keraudren, and Daniel Rueckert

Biomedical Image Analysis Group, Imperial College London, UK
o.oktay13@imperial.ac.uk

Abstract. Echocardiography is one of the primary imaging modalities
used in the diagnosis of cardiovascular diseases. It is commonly used
to extract cardiac functional indices including the left ventricular (LV)
volume, mass, and motion. The relevant echocardiography analysis meth-
ods, including motion tracking, anatomical segmentation, and registra-
tion, conventionally use the intensity values and/or phase images, which
are highly sensitive to noise and do not encode contextual information
and tissue properties directly. To achieve more accurate assessment, we
propose a novel spectral representation for echo images to capture struc-
tural information from tissue boundaries. It is computationally very e�-
cient as it relies on manifold learning of image patches, which is approx-
imated using sparse representations of dictionary atoms. The advantage
of the proposed representation over intensity and phase images is demon-
strated in a multi-atlas LV segmentation framework, where the proposed
spectral representation is directly used in deformable registration. The
results suggest that the proposed spectral representation can provide
more accurate registration between images. This in turn provides a more
accurate LV segmentation. Finally, it is the first time that a multi-atlas
approach achieves state-of-the-art results in echo image segmentation.

1 Introduction

In the diagnosis of cardiovascular diseases, echocardiography is still the most im-
portant and widely used tool due to its high availability and ease of use. It has
been used to extract functional and quantitative indices like left ventricular (LV)
mass, volume and motion. The accuracy of these measurements depends on the
correct delineation of endocardial boundary; thus, automated segmentation tools
are more desirable for analysis as manual tracing is subject to inter-observer vari-
ability and human error. However, volumetric segmentation is still a challenging
task for echo images due to image artefacts and low image quality.

The existing approaches to echocardiography segmentation can be divided
into model-based and data-driven. Deformable surface models [2] and active-
shape models [5] are two examples of the former category, which require a good
model initialization or training to learn shape prior information to subsequently
segment the ventricle boundary in target images. Although these approaches
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achieve state-of-the-art segmentation results, they are limited by inter-subject
anatomical variations due to the extensive training needed to cope with large
shape variations. On the other hand, the second category relies on intensity
distributions instead of a trained model. Thus, they are less sensitive to inter-
subject variability, but are highly susceptible to the noise level and inconsisten-
cies in the intensity distribution. Two common examples are edge-based level
sets [12] and multi-atlas segmentation [20]. Particularly, although atlas based
approaches have been successful for MRI segmentation [1], large registration
errors on echo images prevent them from being e↵ective for echo images.

Indeed, intensity and phase images are not representative enough to guide
image registration because they do not directly reflect properties of the tissues or
their contextual information. In this paper, to address this problem we propose
a novel spectral representation for echo images, through which we extend and
outperform the multi-atlas segmentation framework proposed in [20]. The new
image representation captures structural information and guides the deformable
registration to obtain a better tissue alignment. It also reduces the noise sensi-
tivity and removes the need for image compounding, and ultimately achieving
higher segmentation accuracies.

Spectral embedding is employed to compute the proposed representation,
which has been successfully applied in min-cut segmentation [8], multi-modal im-
age registration [16], and large deformation estimation problems [10]. Neverthe-
less, spectral embedding is not directly applicable to 3D echo images due to the
large number of image patches, resulting in long computation times and intensive
memory usage. We therefore propose, as an additional contribution, a more e�-
cient embedding that exploits the redundant nature of echo image patches. The
underlying manifold structure is learned only for atoms from a trained dictionary
that sparsely represent the image patches. A single over-complete dictionary is
assumed to be representative enough for all echo image patches to approximate
the low dimensional space and each image patch is mapped to the underlying
manifold space as a sparse linear combination of atoms yielding a set of spectral
coordinates. To preserve the geodesics and local structure, sparse selection in
coding is achieved by enforcing the locality constraint [17], which implies both
sparsity and locality as explained in [18].

In the context of this paper, the proposed image patch embedding is referred
as spectral representation. The paper is structured as follows: In section 2 of this
paper, we introduce the relevant theory of dictionary learning and sparse coding
for the manifold approximation. Section 3 presents validation results on the
CETUS challenge data [4], which shows significant improvement in segmentation
accuracy using the proposed representation over phase and intensity images. In
the last section, the paper concludes by a brief discussion of the results.

2 Methodology

In the proposed segmentation framework, echo images are first sparsely recon-
structed with dictionary atoms for speckle reduction. Secondly, a spectral repre-
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Fig. 1. Block diagram of the proposed multi-atlas segmentation framework

sentation is extracted from the processed images by mapping image patches to
the manifold space of the dictionary atoms. Then, atlas labels are propagated
to the target image by deformable registration using the spectral representation.
The framework is shown in Fig. 1 and detailed below.

Speckle reduction: Target echo sequences are preprocessed prior to segmen-
tation to increase signal-to-noise ratio. Instead of relying on standard speckle re-
duction techniques [6], images are denoised using dictionary learning and sparse
coding similar to the image denoising application in [7]. On top of achieving state-
of-the-art denoising, dictionary learning provides global patch analysis by build-
ing a set of atoms from training data that sparsely represent image patches. For
echo images, these atoms have characteristic edge patterns. We use the K-SVD
algorithm [7] to approximate image patches yn 2 RP as sparse combinations
xn 2 RM of atoms from an over-complete dictionary C 2 RP⇥M with a preci-
sion bounded by ✏, namely solving: min

C,X

PN
n=1 kxnk0 s.t. 8n , kyn �Cxnk2 

✏ | ✏ 2 R+. Patches are overlapping and wrap around image boundaries, meaning
there are N patches for an image of N pixels.

Spectral representation: As shown in previous works [10,16], spectral co-
ordinates can be computed using non-linear dimensionality reduction of image
patches; this paper particularly focuses on Laplacian Eigenmaps (LE) [3]. The
algorithm computes the Laplacian graph L = I �D

�1/2
AD

�1/2 using the ad-
jacency and degree matrices A,D 2 RN⇥N corresponding to all image patches.
Then, spectral coordinates are obtained by finding the lowest K eigenvectors of
the matrix L. This representation is suited for small datasets such as small stacks
of MRI slices, but is prohibitive for 3D echo volumes due to the large amounts
of voxels in the image that result in a very large adjacency matrix. Furthermore,
finding a fixed low-dimensional space for all images is also challenging and is
usually solved by point-matching algorithms.

To overcome these problems, we propose to perform manifold learning on dic-
tionary atoms (cm 2 RP ) and then the spectral coordinates are approximated
by sparse linear combinations of dictionary atoms. For this approximation, two
main assumptions are made: (1) echo image patches can be sparsely represented
by dictionary atoms and (2) these patches can be expressed in a manifold [11]
that groups atoms with similar edge patterns. In that respect, the learned dic-
tionary atoms that are the byproduct from the speckle reduction step are trans-
formed into spectral coordinates with LE. Dictionary atoms of similar shape are
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Fig. 2. The lowest two spectral coordinates of the dictionary atoms (left), locality
constrained linear coding of a query patch to map it to manifold space (right).

grouped together in the spectral coordinates and the variance of the patches is
maximized, as shown in Fig. 2. With the embedding learned, each image patch
(yn) is mapped to the lower dimensional space through linear combinations (x̃n)
of spectral coordinates corresponding to dictionary atoms (sc 2 RM⇥K) solv-
ing: syn = x̃

>
n sc. The linear codes are found by minimizing the cost function

min
X

P
n kyn � Cx̃nk2 + � kbn � x̃nk2 s.t. 8n ,1>

x̃n = 1, where � denotes

the element-wise multiplication and � 2 R+. This formulation enforces a local-
ity constraint [17] based on pair-wise distances bn = [b(n,1), . . . , b(n,M)] where
b(n,m) = exp ( k(yn � cmk2 /� ) and � is the variance term. The penalty term
assigns higher weights to dictionary atoms cm that are close to the patch yn.

As explained in [18], the locality constraint also implies sparsity, thus the
solution can be considered as a sparse weighting of the dictionary atoms. The
sparse codes computed in Euclidean space can be applied in manifold space as
long as the locality constraint is applied. A single component of approximated
spectral coordinates is displayed in Fig. 3.

Multi-atlas segmentation: The proposed spectral representation is used in
image registration to perform multi-atlas segmentation on echocardiographic
images. Di↵erent than the standard multi-atlas approach [1], the image similarity
metric in the proposed registration algorithm is based on image descriptors. In
that respect, images are aligned to each other by minimizing sum-of-squared
di↵erences (SSD) between their spectral coordinates instead of image intensity
values.

The proposed segmentation framework is described as follows: All atlases
collected from the training dataset are linearly aligned to a target image using
manually selected three landmarks (left ventricle apex, mid-ventricle, and mitral
valve). Similar to the approach in [1], a subset of atlases is selected by computing
normalized mutual information (NMI) over a region of interest defined by the
atlas labels and target image. The most similar L atlases are then selected and
spectral represented atlases (SA) are deformable registered to the target spectral
image (ST ) with B-spline FFD [14]. The following cost function is minimized:
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PK
k=1 kSAk(p + u) � STk(p)k2 + �R(u), where p, u and k denote position,

displacement and spectral coordinate dimension. The regularization R is defined
as bending energy and weighted by � 2 R+. The algorithm estimates a single
common displacement field between volumetric spectral image pairs (in total
K) while minimizing the cost function. Lastly, the segmentation is decided by
majority voting of the propagated atlas labels.

Local phase images: The work in [20] on multi-atlas echocardiograhy segmen-
tation uses local phase images to register atlases to target images. To demon-
strate the contribution of the proposed spectral representation, local phase im-
ages are evaluated in the same segmentation framework. Images are first con-
verted to a band-pass signal with Laplacian of Poisson filter [19]: F{LOP}(w)
= �8⇡3|w|2 exp(�2⇡|w|⇢), where w 2 R3 is the position vector in the frequency
domain and ⇢ controls the central frequency. In our experiments, this filter selec-
tion achieved better results compared to Gaussian derivative filter. Afterwards,
an analytic signal is obtained by filtering with an isotropic Riesz filter, and the
phase image is characterized by the angle between real and imaginary compo-
nents as explained in [20]. Additionally, local-phase based boundary images [13]
are evaluated in the same framework, which are computed in multi-scale (⇢ 2 R3)
using a monogenic signal. An example of the computed phase and boundary im-
ages is displayed in Fig. 3. In the registration step of multi-atlas segmentation,
the cost function is defined as C = !1 .NMI(IA, IT ) + !2 .NMI(�A,�T ), where
� and I denote phase and intensity images. A similar formulation is used for
boundary images by replacing phase images in the cost function.

3 Implementation and Results

Validation dataset: The proposed segmentation framework is validated on
the dataset provided by the MICCAI 2014 CETUS challenge [4], consisting of a
set of 3D echo cardiac image sequences acquired from 30 subjects and separated
into training (15 subjects) and testing (15 subjects) datasets. As ground truth
segmentations for the testing set are not provided, the validation is performed
blindly using the evaluation system provided by the CETUS.

Fig. 3. Left to right: (1) input image, (2) phase-based boundary detection, (3) local
phase image, (4) proposed spectral representation (single component of embedding)
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Table 1. Multi-atlas segmentation results on training (cross-validation) and testing
datasets based on (A) Unprocessed images, (B) Speckle reduced images, (C) Local
phase-based boundary images [13], (D) Local phase images [20], and (E) Proposed
spectral representation. EF and SV values are reported based on the percentage error
measure. Surface distances are given in terms of mean and maximum values.

Mean (mm) Max (mm) Dice Score Ejection fraction Stroke volume

T
es
ti
n
g

(A) 3.85±2.06 12.24±5.12 0.80±0.11 0.62±0.21 0.72±0.22
(B) 2.84±1.07 10.00±3.04 0.85±0.06 0.81±0.14 0.77±0.16
(C) 2.98±1.20 8.99±3.05 0.84±0.07 0.85±0.11 0.76±0.15
(D) 2.67±0.92 8.69±2.78 0.85±0.05 0.85±0.10 0.78±0.13
(E) 2.32±0.78 7.41±1.84 0.87±0.04 0.93±0.05 0.87±0.09

T
ra
in
in
g

(A) 2.67±0.86 8.81±3.23 0.87±0.06 0.63±0.11 0.58±0.14
(B) 2.39±0.62 8.55±2.90 0.88±0.05 0.72±0.25 0.74±0.34
(C) 2.60±0.75 8.48±2.66 0.88±0.05 0.72±0.22 0.72±0.21
(D) 2.31±0.67 7.71±2.55 0.89±0.04 0.73±0.23 0.74±0.21
(E) 2.19±0.56 7.63±2.43 0.89±0.04 0.80±0.18 0.86±0.15

Implementation details: The patch and dictionary sizes selected for dictio-
nary learning are P = 7x7x7 and M = 850. The adjacency graph is constructed
by linking each dictionary atom to its 8 most similar neighbours in terms of
`2 norm distance. In total K = 4 spectral components are selected for spectral
representation. In locality constraint coding, parameters are set to � = 0.3 and
� = 0.2 for normalized images. The bandpass filter parameter for the compu-
tation of phase images is chosen to be ⇢ = 4.5 and ⇢ = [3.5, 5.0, 7.0] for the
boundary images. To conclude, the regularization weights in the registration
cost functions are defined as !1 = !2 = � = 1, and L = 5 atlases are selected
from the training dataset for label propagation.

Validation strategy and results: In the validation, LV segmentation is done
only for the end-diastolic and systolic frames. The accuracy of computed segmen-
tations and clinical indices are used as criteria to evaluate the proposed method
and compared against phase and intensity images. In that respect, multi-atlas
segmentation is performed on 5 di↵erent types of image surrogates, which are
provided in Table 1. The evaluation is performed separately for testing and train-
ing datasets (cross-validation). As shown, the best result for the testing dataset
is obtained using spectral representation based multi-atlas segmentation, which
achieves 2.32 mm mean error and 0.87 Dice score. In comparison to intensity
and phase images, an improvement of 1.53 and 0.35 mm is observed for the mean
surface distance and a similar figure of merit is seen for Dice score results. This
suggests that the proposed representations provide more useful information to
guide the registration algorithm. Moreover, the results for the cross-validation on
the training dataset also demonstrate that spectral representation outperforms
segmentation based on speckle reduced intensity images.
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Table 2. Comparison of the proposed multi-atlas approach (E) against the state-
of-the-art echocardiogaphy segmentation: active surfaces [2] and active shape model
[5]. Estimated ejection fraction (EF ) and end-diastolic volume (EDV ) are compared
against their reference values. The correlation accuracy is reported in terms of Pearson’s
coe�cient (R) and Bland-Altman’s limit of agreement (BA).

Mean (mm) REF BAEF (µ± 2�) REDV BAEDV # of Patients

(E) 2.32±0.78 0.923 -0.74±6.26 0.926 12.88±35.71 15
[2] - 0.907 -2.4±23 0.971 -24.60±21.80 24
[5] 1.84±1.86 - 0±19 - 3.06±46.86 10

To assess the clinical usefulness of the proposed framework, ejection fraction
(EFc) and stroke volume (SVc) are evaluated for each patient and compared
against their reference values (EFr). The comparison is done by the percentage
error measure CEF = 1� |EFc�EFr|/EFr, similarly for the stroke volume CSV .
The mean value of the percentage errors given in Table 1 demonstrate that the
values computed using the spectral representation show a closer agreement with
reference values compared to the other representations. Furthermore, a qualita-
tive comparison of the segmentations obtained with the spectral representation
and phase image is given in Fig. 4. Finally, the validation results are compared
against two state-of-the-art methods in echocardiography segmentation, shown
in Table 2. Although the given results are obtained for di↵erent datasets, the
comparison demonstrates that multi-atlas segmentation can be as successful as
the best-performing methods in estimation of important clinical parameter val-
ues.

It is observed that the use of a larger number of atlases does not increase the
accuracy significantly because the dataset is small and contains large variations,
so limiting the number of atlases to 5 in all experiments reduced computation
time. Experiments were carried out on a 3.00 GHz quad-core machine, and the
approximate computation time per image was 3 min for denoising, 2.5 min for
spectral representation, and 30 min for deformable registrations with 5 atlases.

Fig. 4. Left ventricle segmentation of two di↵erent subjects. Segmentation obtained
with the spectral representation (in blue) delineates the endocardium more accurately
than the local phased multi-atlas segmentation (in orange).
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4 Discussion and Conclusion

In this paper, we presented a new spectral representation for echocardiograhy
images based on sparse reconstruction of dictionary atom spectral embeddings.
The advantages of this representation are both quantitatively and qualitatively
demonstrated in a multi-atlas LV segmentation framework. The results show
that it outperforms the local phase and boundary representations in terms of
segmentation accuracy. This finding can be related to an improved noise robust-
ness and the explicit use of encoded contextual information, the lack of which in
intensity and phase images is an important limitation for guiding the deformable
registration in multi-atlas segmentation.

In addition, the proposed representation is computationally e�cient and does
not require image feature design by hand-crafting as in phase images since dis-
tinctive spectral representation is learned from the data itself. Another interest-
ing realization is that spectral representation based multi-atlas segmentation can
achieve state-of-the-art results in echocardiography LV segmentation, without re-
quiring any shape prior models. Previous attempts on multi-atlas segmentation
required image compounding, and they were not as successful as the proposed
framework due to inaccuracies in registration algorithm.

The proposed image descriptors could alternatively be replaced by the sparse
coding coe�cients without a need for spectral embedding, as proposed in [15]
for image segmentation and in [9] for image registration. One particular example
would be the use of histogram of sparse codes to represent the image patches.
However, the spectral embedding has two main advantages in comparison to
the coe�cient based representation: Spectral coordinates obtained from di↵er-
ent image patches are comparable, and they allow the use of globally smooth
distance metrics which are necessary for the registration stage. On the other
hand, sparse codes in an overcomplete dictionary, unlike in an orthonormal ba-
sis, are non-unique and are therefore unsuitable for image patch comparison.
Locality constrained coding yields a locally smooth sparse selection of atoms,
meaning that a distance metric could potentially be defined locally at best, but
not globally. The other advantage of spectral embedding is the reduced computa-
tion time. The spectral coordinates provide a compact and rich representation of
patches with a few components, whereas histogram of coe�cients would require
a large number of computations for comparison and a large vector to represent
an image patch.

In conclusion, sparse and parametrizable characteristics of echo images enable
us to develop a consistent spectral representation that contains rich structural
information. The proposed representation is generic, and can be applied to other
ultrasound image applications which require image registration.
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Abstract. Multiplex immunohistochemistry (IHC) staining is a newly
emerging technique for the detection of multiple biomarkers within a
single tissue section and has become more popular due to its significant
efficiency and the rich diagnostic information it contains. Therefore, to
accurately unmix the IHC image and differentiate all the stains is of
tremendous clinical importance since it is the initial key step in multi-
plex IHC image analysis in digital pathology. Due to the limitation of the
CCD color camera, the acquired RGB image only contains three chan-
nels, and the unmixing of which into more than three colors is hence a
challenging task. To the best of our knowledge, such a problem is barely
studied in literature.

This paper presents a novel stain unmixing algorithm for brightfield
multiplex IHC images based on a group sparsity model. The proposed
framework achieves robust unmixing for more than three chromogenic
dyes while preserving the biological constraints of the biomarkers. Typ-
ically, a number of biomarkers co-localize in the same cell parts. With
this biological information known as a priori, the number of stains at
one pixel therefore has a fixed up-bound, i.e. equivalent to the number
of co-localized biomarkers. By leveraging the group sparsity model, the
fractions of stain contributions from the co-localized biomarkers are ex-
plicitly modeled into one group to yield least square solution within the
group. Sparse solution is obtained among the groups since idealy only
one group of biomarkers are present at each pixel. The algorithm is eval-
uated on both synthetic and clinical data sets and demonstrates better
unmixing results than the existing strategies.

1 Introduction

A multiplex immunohistochemistry (IHC) slide has the potential advantage of
simultaneously identifying multiple biomarkers in one tissue section as opposed
to single biomarker labeling in multiple slides. Therefore, it is often used for si-
multaneous assessment of multiple biomarkers in cancerous tissue. For example,
tumors often contain infiltrates of immune cells, which may prevent the develop-
ment of tumors or favor the outgrowth of tumors [1]. In this scenario, multiple
biomarkers are used to target different types of immune cells and the population
distribution of each type of them is used to study the clinical outcome of the pa-
tients. The biomarkers of the immune cells are stained by different chromogenic



2

dyes. In order to conduct accurate detection and classification of the cells, the
correct unmixing of the IHC digital image to its individual constituent dyes for
each biomarker and obtaining the proportion of each dye in the color mixture is
a prerequisite step for multiplex IHC image analysis.

Typically, a tissue slide is stained by the multiplex assay. The stained slide
is then imaged using a CCD color camera mounted on a microscope or a scan-
ner. The acquired RGB color image is a mixture of the underlying co-localized
biomarker expressions. Several techniques have been proposed in the literature
to decompose each pixel of the RGB image into a collection of constituent stains
and the fractions of the contributions from each of them. Ruifrok et al. devel-
oped an unmixing method called color deconvolution [2] to unmix the RGB
image with up to three stains in the converted optical density space. Given the
reference color vectors xi ∈ R3 of the pure stains, the method assumes that
each pixel of the color mixture y ∈ R3 is a linear combination of the pure stain
colors and solves a linear system to obtain the combination weights b ∈ RM .
The linear system is denoted as y = Xb, where X = [x1, . . . , xM ],M ≤ 3 is
the matrix of reference colors. This technique is currently most widely used in
digital pathology domain, however, the maximum number of stains which can
be resolved is limited to three, as the linear system is deficient for not having
enough equations when there are more than three stains. A multilayer percep-
tron learning based technique has been proposed in [4] for three color brightfield
image unmixing. In [3], Rabinovich et al. formulated the color unmixing prob-
lem into non-negative matrix factorization and proposed a system capable of
performing the color decomposition in a fully automated manner, wherein no
reference stain color selection is required. Again, these methods have the same
limitation in dealing with large stain numbers due to solving y = Xb. To the best
of our knowledge, the method of unmixing brightfield IHC image with more than
three stains is not available in literature. In order to compare with the Ruifrok’s
method, we divide the color space into several systems with up to three colors in
each system based on nearest color matching of each pixel to one of the systems.
Ruifrok’s method can therefore be used in solving each individual system. Due
to the independent assignment of each pixel into different systems, the spatial
continuity is lost in the unmixed images and artifacts such as holes are observed.
However, this is the most straightforward modification of Ruifrok’s method to
work on more than three color multiplex brightfield image unmixing.

Alternatively, there exists another class of methods for multi-spectral image
unmixing that works for a larger number of stain colors [5–9]. In fact, the multi-
spectral image differs from the RGB image in terms of image acquisition. Multi-
spectral imaging system is used to capture the image using a set of spectral
narrow-band filters instead of the CCD color camera. The number of filters K
can be as many as dozens or hundreds, leading to a mutli-channel image that
provides much richer information than the bright field RGB image. The linear
system constructed from it is always an over-determined system with X being a
K ×M(K ≫ M) matrix that leads to a unique solution. However, the scanning
process in the mutli-spectral imaging system is very time consuming and only a
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single field of view, manually selected by the technician, can be scanned instead
of the whole slide, the usage of which is thus limited. As an example of the
multi-spectral imaging unmixing, the two-stage methods [6, 7] are developed in
the remote sensing domain to first learn the reference colors from the image
context and then use them to unmix the image. More recently, a sparse model
is proposed by Greer in [9] for high dimensional multi-spectral image unmixing.
It adopts the L0 norm to regularize the combination weights b of the reference
colors hence leads to a solution that only a small number of reference colors
are contributed to the stain color mixture. This serves as a valuable source of
inspiration for selecting regularization terms for the linear system. However, the
method proposed in [9] is also designed for multi-spectral image and no prior
biological information about the biomarkers are used in that framework which
may lead to undesired solution for real data.

In this paper, we propose a novel color unmixing algorithm for multiplex
IHC image (scanned using CCD color camera) that can handle more than three
stain colors and maintain the biological properties of the biomarkers. Intuitively,
the unmixing algorithm for the multiplex IHC image should work as following.
(1) Only one group of stains has non-zero contribution in the color mixture for
each pixel. (2) Within that group, the fractions of the contributions from each
constituent stain should be correctly estimated. These conditions motivate us to
model the unmixing problem within the group sparsity [10] framework so as to
ensure the sparsity among the group but non-sparsity within the group.

2 Methodology

Fig. 1: The group sparsity framework of the unmixing algorithm.

In this section, we present the methodology of our algorithm. We begin with
illustrating the basic framework in Fig.1 using the following example. In the
analysis of cancerous tissues, different biomarkers are specified to one or more
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types of immune cells. For instance, CD3 is a known universal marker for all T-
cells and CD8 only stains the membranes of the cytotoxic T-cells. FoxP3 marks
the regulatory T-cells in the nuclei and Hematoxylin (HTX) stains all the nuclei.
Therefore, the co-localization information of the markers can be inferred from
the biological knowledge, i.e. CD3 and CD8 co-locate in the membrane while
FoxP3 and HTX may appear in the same nucleus. We can also have tumor
marker on the tumor cell’s cytoplasm region and B-cell marker on the B-cell’s
membrane. The framework of our proposed algorithm is shown in Fig.1 using
the aforementioned immune cell example. Based on this biological co-localization
information of the biomarkers, it is straightforward to conclude that only two
colors can co-exist at each pixel for this case. The six chromogenic stains are
therefore grouped into four different groups where co-localized stains are in the
same group, as shown in the right panel of Fig.1.

2.1 Optical Density Transform

For the preprocessing, the RGB image I is converted into the optical density
(OD) space using the following formula derived from Beer’s law based on the
fact that the optical density is proportional to the stain concentration.

Oc = − log(
Ic
I0,c

) (1)

where c is the index of the RGB color channels, I0 is the RGB value of the white
points and O is the optical density image obtained. As in [2], O will be image
to work with in the rest of the paper.

2.2 Group Sparsity Unmixing

We begin with illustrating the notations used in this paper. Let y be a pixel
of O and it is a 3-dimensional column vector corresponding to the OD values
converted from RGB. Assume there are M biomarkers available in the multiplex
IHC slide. We have M stain colors. Let b be the combination weight vector of
the stains and bm,m = 1, . . . ,M is the mth element of b. The typical unmixing
problem thus is formulated as the following:

min
b

||y−Xb||22. (2)

Each column ofX corresponds to a reference stain color sampled from the control
slide of pure stain. As we discussed before, this linear system has solution only
when the column ofX is less than or equal to 3 for y ∈ R3. Therefore, meaningful
regularization is needed for the linear system to have a solution.

The biomarker co-localization information provides a partition of b into a set
of groups g1, g2, . . . , gN , N being the total number of groups. Within each group,
the biomarkers are known to have the co-localization possibility. We adopt this
biological information to formulate the regularization term of the cost funciton.
Let gi be a qi-dimensional column vector representing the combination weights
of the stains within the ith group and qi be the number of stains within the group
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gi. We thus have q1 + q2 . . . + qN = M . xi denotes the ith group of reference
colors, which is a 3 × qi matrix. Fig.1 shows an example of the stain group
setting. Six stains are available in this example (M = 6). Two of them are co-
localized membrane stains and two are co-localized nucleus stains. One is tumor
cytokeratin stain and the rest is a membrane stain but only for B-cell. This
information allows us to divide the stains into four groups (N = 4) as shown
in Fig.1. For instance, g2 contains b2 and b3 that are corresponding to the two
co-located nucleus stains and x2 contains the reference color vectors for all the
stains within the 2nd group. However, the 4th stain of B-cell marker does not
co-localize with other biomarkers, so g3 only has one single member b4 and x3

is its reference color vector.
More specifically, the unmixing problem is formulated as the following convex

optimization problem with the aforementioned notations:

min
b

||y−
N∑

i=1

xigi||22 + λ
N∑

i=1

√
qi||gi||2 (3)

where b = [b1, b2, . . . , bM ]t = [gt1, g
t
2, . . . , g

t
N ]t and || · ||2 is the Euclidean norm

with out squared. The first term in Eqn.3 solves for the linear system that is
equivalent to [2], which minimize the least square error between the intensity of
the raw image and the possible linear combination of the reference colors that
approximates the raw image. λ is the regularization parameter that controls the
amount of the group sparsity constraint in the second term. This model will
act like LASSO at the group level. The entire groups will be dropped out when
optimal b (or g) is found, that is only a small number of gi are non-zero.

Note that when the size of each group qi = 1, the model becomes equivalent to
lasso. In this case, no biological co-localization information is used in this model
however the system remains to be solvable due to the sparsity constraints. The
background noise is suppressed in this setting, comparing to the conventional
Ruifrok’s method. In the experiment section, we’ll also demonstrate the efficacy
of lasso unmixing by limiting the size of the group to 1.

Alternative direction method of multipliers (ADMM) algorithm [11] is used to
solve Eqn.3. We implemented the algorithm in C++ to provide fast computation.
It costs about 7 seconds to unmix a 750 by 1400 image on an Intel Core i7
1.87GHZ PC.

3 Experiments

3.1 Synthetic Data Experiment

As ground truth unmixing results are not available for real clinical data, we cre-
ated a synthetic multiplex image from ground truth unmixed channels to validate
our algorithm. We first synthetically generated six unmixed images as shown in
the first row of Fig.2 C, following the stain co-localization and grouping rule
in the example framework (Fig.1). The vectorized binary masks of the unmixed
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Fig. 2: Toy example. A: Image to be unmixed. B: The average intensity error of in-
creasing λ for each channel. C: Unmixing results with different λ.

channels were multiplied by the reference color matrix to create the multiplex
image in Fig.2 A. To demonstrate the algorithm performance w.r.t. the group
sparsity regularization parameter λ variation, we plotted the average intensity
error between the algorithm outputs and the ground truth unmixed channels
in Fig.2 B for λ with in the range 0 to 2.The plot shows that the system has
stable solutions when λ > 0.3. In Fig. 2 C, we also show the unmixing results
for increasing λ. Note that when λ = 0.01, the system is close to deficient as in
Eqn.2, hence unmixing errors are observed as shown in the second row of Fig.2
C.

3.2 Clinical Data Experiment

Fig. 3: Multiplexed tis-
sue image real data ex-
ample.

A clinical data set containing several different cancer
tissue samples was used to demonstrate the proposed
algorithm, including colorectal cancer, non small cell
lung cancer and breast cancer that consist of 32 fields
of view (FOV). The tissues were stained with the fol-
lowing assay as shown in Fig. 3: yellow chromogen
for tumor cell cytokeratin, purple for regulatory T-
cell nucleus, blue for universal nucleus, light blue for
B-cell membrane, orange for universal T-cell mem-
brane and dark green for cytotoxic T-cell membrane.
Fig.5 shows the unmixing examples of decomposing
the multiplexed image into single stain channels using
modified Ruifrok’s method based on nearest neigh-
bor color assignment and the proposed group sparsity
method. Note that λ is set to be 0.5 through the clinical data experiments. Pixel
discontinuities, unmixing errors and artifacts are observed from the modified
Ruifrok’s method by solving multiple three color systems using the color sim-
ilarity for system assignment. The proposed method instead solves one single
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system for all the pixels hence leads to a smoother unmixed images, meanwhile
maintains the biological constraints as wells as reduces the background noises
due to the group sparsity regularization.

Since the cytotoxic T-cell is a subset of the universal T-cell, the green cy-
totoxic T-cell membrane marker always co-localizes with the orange universal
T-cell membrane marker, but the orange marker can present alone. Fig. 6 shows
an example of the orange only cell and the green and orange co-localized cell.
We can see that the aglorithm is able to handle both cases. This demonstrates
that the L2 norm constraint is used within the group to linearly separate the
color mixture into different stain channels. Meanwhile, the modified Ruifrok’s
method is prone to unmixing errors due to the hard assignment of the unmixing
system based on color similarity.

Fig. 4: Two-stain unmixing result comparisons when
group size is 1.

As a special case
example, the algo-
rithm can also be
used for less than or
equal to three color
unmixing. When the
group size becomes
1, the algorithm is
equivalent to Ruifrok’s
unmixing plus a sparse
constraint on the com-
bination weights. The
system can be solved
by LASSO. We set
the group size to
1 and compared to
Ruifrok’s method [2]
for two-stain unmix-
ing on a clinical breast
cancer data set con-
taining 217 FOVs.
The proposed tech-
nique consistently shows
better performance than Ruifrok’s method. Example results are shown in Fig.4
and much less background noise is observed using the proposed sparse unmixing
method.

4 Conclusion

In this paper, we introduce a novel color unmixing strategy for multiplexed
bright field histopathology images based on a group sparsity model. The bio-
logical co-localization information of the biomarkers is explicitly defined in the
regularization term to produce biologically meaningful unmixing results. The
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Fig. 5: Comparisons between the proposed group sparsity unmixing method and the
modified Ruifrok’s method based on nearest neighbor color assignment. More com-
pleted nuclei (purple and blue channels) are observed in group sparsity unmixing re-
sults. Incorrect universal T-cell unmixing is observed in modified Ruifrok’s unmixing
result due to the lack of co-localization constraint.

Fig. 6: Example unmixing of T-cell membrane co-localization case. a: The proposed
group sparsity method without co-localization constraint (group size = 1). b: The
proposed group sparsity method with co-localization constraint (group size = 2 for the
two membrane stainings).

experiments of both synthetic and clinical data demonstrate the efficacy of the
proposed algorithm in terms of accuracy and stability when compared to the
existing techniques.
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Abstract. We present a new method for rigid registration of CT scans
in Radon space. The inputs are the two 3D Radon transforms of the
CT scans to be registered, one densely sampled and the other sparsely
sampled. The output is the rigid transformation that best matches them.
The algorithm starts by finding the best matching between each direction
vector in the sparse 3D Radon transform and the corresponding direction
vector in the dense 3D Radon transform. It then solves the system of
linear equations derived from the direction vector pairs. Our method can
be used to register two CT scans and to register a baseline scan to the
patient with reduced-dose scanning without compromising registration
accuracy. Our preliminary simulation results on the Shepp-Logan head
phantom dataset and a pair of clinical head CT scans indicates that our
3D Radon space rigid registration method performs significantly better
than image-based registration for very few scan angles and comparably
for densely-sampled scans.

1 Introduction

Rigid registration of CT scans acquired at different times plays a key role in nu-
merous medical applications, including diagnosis, follow-ups, surgery planning
and simulations. Rigid registration methods include intensity-based iterative reg-
istration methods, fiducial-based registration methods, and frequency-based reg-
istration methods. These methods are used routinely in a clinical environment
and yield accurate results in most cases.

Rigid registration plays an increasinlgy important role in image-guided inter-
ventional CT procedures. Interventional CT procedures include biopsies, catheter
insertion, hematoma evacuation, and many more. Often times, a high-quality CT
scan of the patient is available before the procedure. Since the diagnosis and pro-
cedure planning is usually performed on this CT scan, it is desirable to use it
for guidance during the intervention. In addition, repeated CT scanning is often
performed during the intervention to evaluate anatomical changes and deter-
mine the location of surgical tools. This results in the exposure of the patient
to ionizing radiation, which has been shown to have risks for the patient [1, 2].
It is thus highly desirable to develop methods that reduce the radiation dose
required for intraoperative CT registration.
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Two main approaches have been developed for rigid registration of CT scans:
1) image-based, and 2) Radon-based. Image-based methods, by far the most
popular, perform the registration by comparing the intensity values of both
scans. To yield adequate results, they require both CT scans to be of high quality
and free of image reconstruction artifacts. Radon-space methods use the CT
scans Radon transform representation (sinograms) for the registration. They are
not subject to image reconstruction artifacts and have the potential to yield
robust and accurate results with reduced-dose scanning.

Previous research addresses rigid registration in Radon space with a variety
of methods. Freiman et al. [3] describe a method for 2D/3D registration of X-
Ray to CT images. Their method uses invariant features in Fourier space to find
the rigid parameters with out-of-plane coarse registration followed by in-plane
fine registration. Mao et al. [4] describe a slice-by slice registration method in
2D Radon space and its extension to 3D/3D registration for small angles or with
implanted fiducials, and Mooser et al. [5] use an iterative optimization process to
find the registration parameters in 3D Radon space. You et al. [6] investigate the
mathematical relation between rigid movement in image space and Radon space
and its invariants, and in [7] Fourier phase matching technique is applied to this
relation to allow recovery of the rigid registration parameters of translation and
rotation using approximations for small angles. The parameters are extracted
in a stage-by-stage manner that employs the result of the previous stage in the
evaluation of the next parameters, by decomposing the 3D problem into a series
of 2D in-plane registrations.

In this paper we describe a new method for rigid registration of CT scans in
3D Radon space. The inputs are the two 3D Radon transforms of the CT scans to
be registered, one densely sampled and the other sparsely sampled. The output
is the rigid transformation that best matches the 3D Radon transforms. The
algorithm first finds for each direction vector in the sparse 3D Radon transform
the best matching direction vector in the dense 3D Radon transform. It then
constructs and solves a system of linear equations from the direction vector
pairs. The advantages of our method are: 1) it can be used both to register
two CT scans and to register a baseline scan to the patient with reduced-dose
scanning without compromising registration accuracy; 2) it supports fast on-
line patient to baseline CT scan registration; 3) it is robust to noise, small
anatomical differences, and has a wide convergence range because it relies on a
closed-form solution of a set of linear equations instead of an iterative process.
Our preliminary simulation results on the Shepp-Logan head phantom dataset
and a pair of clinical head CT scans indicate that our Radon space method
performs significantly better than image-based registration for very few scan
angles.
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2 Method

We first present the mathematical background of the Radon transform and its
application to CT scan rigid registration. We then describe our new 3D Radon
space method and algorithm details.

Mathematical background. We follow the definitions and notations in [6]
for parallel-beam scanning. Let f : ℜk → ℜ be an image function that maps
k-dimensional location vectors to intensity values. Let H(n, s) be the hyper-
plane defined by normal direction vector n and distance s from the origin in
k-dimensional space. The Radon transform R of image function f is a function
Rf : Sk−1 × ℜ → ℜ defined on unit sphere Sk−1 of normal direction vector n

and distance s:

Rf(n, s) =

∫

H(n,s)
f(X)dµ (1)

where X is an k-dimensional vector and dµ is the standard measure on H(n, s).
Let f, g be two image functions such that g is a similarity transformation of f :

g(X) = f(ρAr,θX +X0) (2)

where ρ > 0 is the scaling constant, X0 ∈ ℜk is the constant offset vector, and
Ar,θ is a unitary k × k matrix in which rotations are represented by an axis
vector r and an angle θ of rotation about r. A well-known relation between the
Radon transforms Rf,Rg of image functions f, g is:

Rg(n, s) = ρn−1Rf(n′, ρ−1(s+ n ·X0)) (3)

where n and n′ are normal unit direction vectors satisfying:

n
′ = A−1

r,θn (4)

This relation can be interpreted as follows. For a given normal unit direction
vector n, the Radon transforms of f and g, Rf(n, s) and Rg(n, s) are one-
dimensional (1D) intensity signals of the distance s, which we denote by Fn(s) =
Rf(n, s) and Gn(s) = Rg(n, s). Without offset and scaling, i.e. when X0 = 0
and ρ = 1, Eq. 3 reduces to Rg(n, s) = Rf(n′, s), which means that the 1D
signals Fn′(s) and Gn(s) are identical for direction vectors n and n′. That is,
the projection in the direction n′ before the image f is rigidly rotated about
the axis r is identical to the projection in a different direction n after the
rotation, where the direction vectors n,n′ are related by the same rotation Ar,θ.
Furthermore, when the offset is not zero, that is X0 ̸= 0, we have:

Gn(s) = Fn′(s+ n ·X0) (5)

which means that Fn′(s) remains the same and is shifted by ∆ = n · X0 for
direction vectors n and n′.

In physical space, the image functions f, g are volumetric images; their Radon
transform, R3Df,R3Dg are 3D, and the direction vectors are points on the unit
sphere S2 (Fig. 1). The spatial rigid transformation that relates f and g can be
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ni

R3Dg(ni,s)

s s

n’j

s

R3Df(n’j,s)Similarity

Fig. 1. Illustration of the matching procedure of 3D Radon transforms. ni,n
′

j are direc-
tion vectors represented as points on the unit sphere. Each direction vector corresponds
to a 1D projection signal R3Dg(ni, s) or R3Df(n′

j , s).

described by a translational offset X0, a rotation axis vector r, and a rotation
angle about it, θ. The goal of the rigid registration is to find the parameters
(r, θ, X0) for which Eq. 2 holds.

The rigid transformation that aligns images f and g can be computed by
matching their 3D Radon transforms, R3Df,R3Dg, instead of matching the im-
ages themselves. This is called rigid registration in 3D Radon space. Furthermore,
since Eq. 2 reduces to Eq. 5 without scaling, we can match Fnj

′(s) and Gni
(s)

where nj
′ and ni are the direction vectors of the 3D Radon transforms. When

these Radon transforms are equal, that is when Gni
(s) = Fn′

j
(s−∆i) for offset

∆i and direction vectors ni,nj
′, then, from Eqs. 4 and 5 we get:

∆i = ni ·X0 (6)

nj
′ = A−1

r,θni (7)

which is a set of linear equations. The desired rigid transformation parameters
(r, θ, X0) can thus be computed by finding the pairs of direction vectors ni,nj

′

that satisfy Eqs. 6 and 7. Three pairs of independent direction vectors suffice to
fully determine the resulting linear system of equations.

In general, the similarity between Fn′

j
and Gni

does not imply Eqs. 6 and
7. Indeed, two identical 1D signals from two different direction vectors need
not correspond to the same region of the images f and g: this similarity may
be coincidental. However, such coincidental signal matches are unlikely in CT
scans of human anatomy, which is rich in complexity and detail, and is radially
asymmetric. For most direction vector pairs, the matchings correspond to the
same image region after rigid transformation. In addition, not all direction vector
pairs yield rigid transformations within the expected range.

3D Radon rigid registration method. Based on these observation, we
propose the following method for 3D Radon rigid registration of image g to



5

image f . The inputs are the 3D Radon transforms of g and f defined by direction

vectors {ni}
K
i=1 and

{

n′

j

}L

j=1
. The goal is to build a set of matching projection

pairs with relative displacements (Fig. 1).
For each direction vector ni we find the matching direction vector nj

′ and
relative displacement ∆i for which the corresponding 1D signals Gni

and Fn′

j

are most similar. The result is a set of matching pairs of projections, along with

their relative displacements
{

(Fn′

j
, Gni

,∆i)
}K

i=1
.

Substituting each direction vector pair in Eqs. 6 and 7 yields an overde-
termined set of linear equations. We compute the desired rigid transformation
parameters (r, θ, X0) by least-squares minimization. Offset X0 is estimated as
X̂0 = (NTN)−1NT∆ where N = [n1 ... nK ]T and ∆ = [∆1 ... ∆K ]T . This

solution minimizes the term
∑K

i=1 (∆i − ni ·X0)2.
To estimate the rotation matrix Ar,θ, we define the 3 × 3 matrix M =

∑K
i=1 n

′

j(i)n
T
i and compute its Singular Value Decomposition M = UTΣV .

From the values of U, V we obtain the estimate Âr,θ = UV T . This solution

minimizes the term
∑K

i=1 (ni −Ar,θn
′

j(i))
2.

A key property of this method is that it does not require a dense set of di-
rection vectors of the 3D Radon transform of image g. Since the set of linear
equations from which the transformation parameters are computed is of dimen-
sion 3, the set is overconstrained with more than three direction pairings. Using
more direction pairs that are not outliers usually increases robustness and im-
proves accuracy. This is akin to point-based rigid registration, in which more
than three point pairs are used. The method is therefore suitable for finding the
rigid registration between sparsely and densely sampled set of direction vectors
for R3Dg and R3Df . This is the situation of interventional CT procedures that
require registering the patient with his/her earlier CT scan.

3D Radon rigid registration algorithm. We now describe a new 3D
Radon rigid registration algorithm based on the method described above. The
inputs are the two Radon transforms R3Df and R3Dg of images f and g. The
output is the rigid transformation (r, θ, X0). The algorithm consists of two steps.
First, for each direction vector in the sparse R3Dg transform, we find the match-
ing direction vector in the dense R3Df transform. Then, we construct and solve
the set of linear equations obtained by substituting each direction vector pair in
Eqs. 6 and 7. We describe each step in detail next.

1. Direction vectors pairing. We evaluate the similarity of the two 1D sig-
nals from two direction vectors with Normalized Cross Correlation (NCC); the
NCC value is the direction vectors pair score. For each direction vector ni,
we select the direction vector nj

′ with the highest NCC score and compute
its relative displacement ∆i. We define an index function match(i) = argmaxj
{

NCC(R3Dg(ni, s), R3Df(n′

j , s)
}

that pairs the direction vectors. To avoid search-
ing all possible direction vectors nj

′, we restrict the search to a neighbourhood of
ni defined by Φ(ni) =

{

n′

j : cos
−1(ni · n′

j) < ϕ
}

where ϕ is the largest expected
relative orientation offset between the images.
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2. Transformation computation. We construct and solve the set of linear equa-
tions obtained by substituting each direction vector pair in Eqs. 6 and 7 as
described above. We use RANSAC to eliminate outliers. Since the resulting set
of equations is 3-dimensional, we obtain high-quality results with a large number
of RANSAC iterations in a short time. We set the RANSAC inliers threshold ψ
for the relative angle cos−1(nT

i Âr,θ n′

j) to be half the angular resolution of the
densely-sampled set R3Df .

Computation of 3D Radon transforms from 2D sinograms. The 3D
Radon transform R3Dg of the baseline image f can be efficiently computed from
the 2D sinograms of the slices as described in [5]. Our algorithm achieves the
desired rigid registration with a sparse sampling of R3Dg, which takes place in
the CT scanner. The reduced number of direction vectors required thus leads
to a significant reduction of the radiation dose without compromising accuracy
and without having to reconstruct the image g.

3 Experimental results

To evaluate our method, we conducted the following simulation experiments in
Matlab. We use the Shepp-Logan head phantom dataset whose size is 256×256×
256 voxels with intensity values in [0, 1]. To simulate data acquisition noise, we
add N(0, 0.05) Gaussian noise to the dataset to obtain the baseline image f .
We then apply to f a series of rigid transformation including both rotations
and translations to generate a new set of images h (Table 1). For each image
h, we generate its sinograms by projection and create a set of new sparsely-
sampled images {gl}. Each image gl is created by filtered back projection from
2 to 18 projection directions instead of the usual 180 required for full-resolution
reconstruction. The resulting images include significant reconstruction artifacts.

Parameter Axis vector r̂ Angle θ Translation X0

Setting not normalized degrees pixels

1 (1, 2, 100) 1.0 (2, 0,−1)
2 (34, 45, 39) -7.7 (14, 15.2,−18.5)
3 (23,−12, 1) 13.2

Table 1. Parameters and settings for the ground-truth transformations. A total of 18
rigid transformations (all possible 3× 3× 2 possible combinations).

We then perform two sets of rigid registrations: one in image space using
Matlab’s imregtform and the other one in Radon space with our method. In
image space, we compute the rigid transformation parameters between the origi-
nal phantom image f and the reconstructed and transformed phantom images gl.
In Radon space we applied our registration method on the 3D Radon transforms
of f and gl. The 3D Radon transform of f was computed at an angular resolution
of 1o for 180 2D projection directions per slice, for a total of 32,400 direction vec-
tors. The resulting rigid transformations of the image-based and Radon-based
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Fig. 2. Plot of the image-based (red) and 3D Radon (blue) rigid transformation error
with respect to the ground-truth transformation (vertical axis) as a function of the
number of scan angles (horizontal axis), 18 to 2.

registration were then applied to the original image f . The resulting images
were compared to the ground-truth rigid transformations of f by computing the
RMS error between 3D voxel coordinates. The experiment was repeated between
3 to 10 times for each rigid transformations and sparse sampling settings. Fig. 2
shows the results. Note that our Radon space method performs significantly
better than image-based registration for very few scan angles (< 12). Note also
that our algorithm handles well rotation offsets > 10o, which are challenging for
other algorithms that rely on small-angle approximations.

In a second experiment, we test our method on a pair of CT scans from a pa-
tient head taken at two different times. The voxel sizes of the CT scans are 0.42
× 0.42 × 0.67 mm3. Prior to registration, we removed the scanning bed from
both images, as the bed is not rigidly attached to the patient and introduces
errors in the Radon space signals. In practice, this can be done automatically,
since the Radon transform of the bed without the patient is always the same and
can be precomputed and subtracted from the patient scan. We then computed
the image-based registration of the full-resolution scans and our Radon space
registration with the second image from 18 angles using our method and com-
pared the results (Fig. 3). The RMSE between the image space registration and
our method is 0.64mm. This indicates that our method yields results comparable
to full-resolution image-space registration with about 10% of the radiation dose
of the second scan.

4 Conclusions

We have presented a new 3D Radon space rigid registration method for CT
scans registration. Our method can be used to register two existing CT scans
and to register a baseline CT scan to the patient for interventional CT proce-
dures. The key characteristic of our method is that it allows the registration of
a full-resolution CT scan to a sparsely-sampled CT scan without compromising
the registration accuracy. This results in a significant X-ray dose reduction when
registering a diagnostic CT scan to the patient prior to image-guided interven-
tional CT procedures. Another advantage of our method is that it supports fast



8

Fig. 3. Overlay of six representative slices from two head CT scans of the same patient:
before registration (top row), after 3D Radon space registration (bottom row).

on-line patient to baseline CT scan registration, as most of the 3D Radon space
computation on the baseline image can be performed prior to the intervention.
Our preliminary results indicate that a very small number of scan directions are
sufficient to obtain voxel size accuracy, that the method has a wide convergence
range, and that it is robust to small anatomical differences.

Future work includes extending our formulation of parallel-beam CT acquisi-
tion to cone beam and spiral acquisition, conducting more extensive simulation
experiments, and conducting studies with actual CT sinograms.
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Abstract. Sparsity regularization allows handling the curse of dimen-
sionality, a problem commonly found in fMRI data. In this paper, we
compare LASSO (`1 regularization) and the recently introduced k-support
norm on their ability to predict real valued variables from brain fMRI
data for cocaine addiction, in a principled model selection setting. Fur-
thermore, in the context of these two regularization methods, we compare
two loss functions: squared loss and absolute loss. With the squared loss
function, k-support norm outperforms LASSO in predicting real valued
behavioral variables measured on an inhibitory control task given fMRI
data from a di↵erent task, designed to capture emotionally-salient re-
ward responses. The absolute loss function leads to significantly better
predictive performance for both methods in almost all cases and the k-
support norm leads to more interpretable and more stable solutions often
by an order of magnitude. Our results support the use of the k-support
norm for fMRI analysis and the generalizability of the I-RISA model of
cocaine addiction.

Keywords: Functional magnetic resonance Imaging (fMRI), Regular-
ization, Sparse representations

1 Introduction

Functional magnetic resonance imaging (fMRI) is a widely used modality within
the field of neuroimaging, that measures brain activity by detecting associated
changes in blood oxygenation. One of the goals of fMRI data analysis is to detect
correlations between brain activation and a task the subject performs during the
scan.

The main challenges in statistical fMRI data analysis [1–4] are (i) the curse
of dimensionality (ii) a small number of samples, due to the high cost of fMRI
acquisition, and (iii) high levels of noise, such as system noise and random neural
activity.
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Sparsity regularizers are key statistical methods for improving predictive per-
formance in the event that the number of observations is substantially smaller
than the dimensionality of the data, as is the case in fMRI analysis. In this
paper we compare the most frequently applied sparsity regularizer developed
in the statistics literature, LASSO [5], with the k-support norm [6], a recently
introduced method which is less biased towards sparse solutions.

The k-support norm can be viewed as a generalization of LASSO when k = 1
and ridge regression when k = d, where d is the dimensionality of the data. The
k-support norm has previously been used in [6] for classification. It was first used
for fMRI data modelling in [7] with a specific choice k parameter of the norm,
that is, the method was not tested in a model selection setting. In both cases
the k-support norm was used with the squared loss function.

We focus on comparing LASSO with the k-support norm in order to estab-
lish the latter regularizer’s superiority in analyzing fMRI data. We use two loss
functions, namely the squared error and the absolute error. The advantage of
the absolute error loss is that it is more robust, in that it penalizes outliers less
than squared loss, while still retaining convexity which guarantees finding the
global optimum. We compare the methods not only in their predictive accuracy
but also in the interpretability and stability of their results.

Our contribution in this paper is threefold. First, we introduce a novel method,
the k-support norm with absolute error. Second, this is the first attempt to com-
pare LASSO with the k-support norm in a principled model selection setting.
Finally, to the best of our knowledge this is the first application of the k-support
norm to a real valued response variable in a challenging clinical setting where
the fMRI signal collected during one task is used to predict behavioral responses
collected at a di↵erent time during a second task.

The neuroscientific motivation for our experiments is the exploration of hu-
man drug addiction. Basic studies have led to a theoretical model of human drug
addiction, characterized by Impaired Response Inhibition (RI) and Salience At-
tribution (SA) (hence, I-RISA) [8]. According to the model, the skew in SA is
predictive of impaired RI, together contributing to excessive drug use and re-
lapse, core clinical symptoms of cocaine addiction. We use the fMRI data from
a SA task (drug Stroop) in order to predict behavioral data in a RI task (color-
word Stroop) collected at a di↵erent time, hence providing further evidence to
support the I-RISA model.

2 Methods

We denote by X 2 Rn⇥d the design matrix of n samples each with d dimensions;
we denote by y 2 Rn the vector of targets.

A basis of statistical inference is the application of regularized risk, in which
a loss function is evaluated over a sample of data and is linearly combined with
a regularizer that penalizes some norm of the prediction function as in (Eq. (1)),
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where the first term is the loss function and the second is the penalty term:

min
�

f(�, X, y) + �J(�). (1)

The scalar parameter � > 0 controls the degree of regularization and J is a
scalar valued function monotonic in a norm of � 2 Rn. Sparsity regularization
is a key family of priors over linear functions that prevents overfitting and aids
interpretability of the resulting models [5, 6]. Key to the mathematical under-
standing of sparsity regularizers is their interpretation as convex relaxations to
quantities involving the `0 norm, which simply counts the number of non-zero el-
ements of a vector. One of the most important sparsity regularizers is the LASSO
[5], where �J(�) = �k�k1. In many learning problems of interest, LASSO has
been observed to shrink too many of the � variables to zero. In the presence
of a group of highly correlated variables, LASSO may prefer a sparse solution.
However including all correlated variables in the model could potentially lead to
higher predictive accuracy [6] and the k-support norm provides a way of cali-
brating the cardinality of the regression vector � so as to include more variables.

The k-support norm can be computed as
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where |�|#i is the ith largest element of the vector and r is the unique integer in
{0, . . . , k � 1} satisfying

|�|#k�r�1 >
1

r + 1

dX

i=k�r

|�|#i � |�|#k�r. (3)

In this paper, we consider LASSO and the k-support norm with two loss
functions: the squared error f(�, X, y) = ky � X�k22 and the absolute error
f(�, X, y) = ky �X�k1.

In practice, we approximate the absolute error with a Huber type smoothing
around zero to ensure di↵erentiability.

3 Experimental Set-up

In this section we present our experiments and the data sets used in them. Our
experiments aim at providing empirical evidence for the support of the I-RISA
model.

We use the fMRI drug-word task described in [9, 10]. The neuropsychological
experiment for cocaine addiction data set has a block design, which includes
eight sessions, with each of them having di↵erent conditions. The two varying
conditions are the monetary reward (50 , 25 , 1 and 0 ) and the cue shown
(drug words, neutral words). The session consists of an initial screen displaying
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the monetary reward and then presenting a sequence of forty words in four dif-
ferent colors (yellow, blue, red or green). The subject was instructed to press one
of four buttons matching the color of the word they had just read. The subjects
were rewarded for correct performance depending on the monetary condition.

We use the behavioral responses of the same subjects in a color-word task
[11], a classic task of inhibitory control. In this task the subjects pressed for ink
color of color words printed in either their congruent or incongruent colors. Four
colors and words (red, blue, yellow and green) were used in all possible combi-
nations. Both congruent and incongruent stimuli were presented randomly. The
subjects performed four consecutive runs of this task. As there were 12 incon-
gruent events in each run of 200 events, each subject’s data contained up to 48
incongruent events.

For 38 control subjects and 74 cocaine abusers, we use the fMRI data from
the drug-word task, to predict color-word behavioral variables.

Our experimental setting consists of 500 trials with an 85% / 15% random
split between training and test sets. We perform model selection on the training
set. That is, for each combination of parameters (� 2 {10i : i = �2, · · · , 8}
for LASSO, � 2 {10i : i = �2, · · · , 8}, k 2 {1, 2, 3, 6, 12, 100, 200, 300, 600} for
k-support norm), we do a leave-one-subject-out cross validation on the samples
that constitute the training set. We measure the correlation between the pre-
dicted and the true response variables on the training set. The parameter setting
that leads to the highest correlation is used on the whole training set in order to
learn a set of weights for each method, which are then applied on the test set.
Finally, we measure the correlation between the predicted and the true response
variables on the test set. We report the mean correlation on the holdout test
samples and its standard error across the 500 random permutations in Sec. 4.
We note that the same sample randomization is used for both LASSO and k-
support norm.

In experiment 1 we use the fMRI contrast drug > neutral words, averaged
over monetary reward condition, to predict the conflict e↵ect in the subjects’
reaction time on the color-word task, defined as the di↵erence in time between
correctly performing the task for congruent and incongruent events. We use the
Insula, Hippocampus Complex, Amygdala and ACC, part of the brain’s limbic
(emotion) circuit, as regions of interest (ROIs) for this experiment. These regions
are chosen on the basis of previous studies on independent datasets that showed
limbic system modulation by drug-related cues, eg. drug words [12].

In experiment 2 we use the fMRI contrast 50 > 0 , averaged over word
type condition, in order to predict the subjects’ responses on the color-word
task, defined as the di↵erence in percent accuracy between performing the task
for congruent and incongruent events. We use the Basal Ganglia and Thalamus,
part of the brain’s reward circuit, as ROIs for this experiment. We chose these
ROIs on the basis of previous studies on independent datasets that showed re-
ward system modulation by primary and secondary reinforcers, including money
[13].
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4 Results

We compare the performance of the two methods in Table 1 for the first exper-
iment and Table 2 for the second experiment.

Mean Correlation, D>N, Conflict e↵ect on Reaction Time
Control Subjects

Norm / Loss Squared Absolute p
LASSO 0.16 (0.02) 0.27 (0.02) <0.01
k-support 0.22 (0.02) 0.24 (0.02) <0.05
p <0.001 0.21

Cocaine Subjects
Norm / Loss Squared Absolute p
LASSO 0.27 (0.01) 0.37 (0.01) <0.001
k-support 0.33 (0.01) 0.36 (0.02) <0.001
p <0.001 0.96

Table 1. Mean (SE) correlation over 500 random permutations of the samples between
the predicted and the actual conflict e↵ect on the reaction times for drug > neutral
using the limbic ROI, for all combinations of regularizers and loss functions. The p-
values were computed with a Wilcoxon signed rank test between the 500 correlation
values for the two combinations of regularizer and loss function in the preceding rows
or columns. Based on the p-values, there is a statistically significant di↵erence between
absolute loss predictions and squared loss predictions and between LASSO and k-
support norm with the squared loss function in both cocaine and control subjects.

With the squared loss function, the k-support norm outperforms LASSO for
almost all cases, while when combined with the absolute loss function, the regu-
larizers do not significantly di↵er in their predictive performance. The absolute
loss function, for both regularizers, leads to correlations that are significantly
higher than those with the squared loss function in almost all cases.

We report the fraction of non-zero weights that were selected by each method
for over 50% of the 500 trials in Tables 3 and 4 for the first and the second ex-
periment respectively.

We average the weights assigned to the voxels over the 500 permutations and
then compute the cumulative distribution function (CDF) for those weights. We
threshold the CDF at 0.9 and visualize the weights of the voxels up to that
threshold1 in Fig. 1. The overly sparse solutions of the LASSO (Fig. 1(b), 1(d))
lead to models that cannot be interpreted as easily as the solutions of the k-
support norm method (Fig. 1(a), 1(c)).

In the presence of correlated features, the degree of sparsity of the solution
can be tuned with the k-support norm in order to include several highly corre-
lated features. In contrast, LASSO tends to pick one representative feature with

1 Due to space constraints we include one representative example out of two for each
experiment. The omitted results are qualitatively similar.
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Mean Correlation, 50 >0 , Conflict e↵ect on Accuracy
Control Subjects

Norm / Loss Squared Absolute p
LASSO 0.25 (0.02) 0.09 (0.02) <0.001
k-support 0.26 (0.02) 0.09 (0.02) <0.001
p 0.42 0.78

Cocaine Subjects
Norm / Loss Squared Absolute p
LASSO 0.22 (0.02) 0.42 (0.02) <0.001
k-support 0.27 (0.01) 0.41 (0.02) <0.001
p <0.001 0.78

Table 2. Mean (SE) correlation over 500 random permutations of the samples between
the predicted and the actual response variables for 50 > 0 using the Basal Ganglia,
Thalamus ROI, for all combinations of regularizers and loss functions. The p-values
were computed with a Wilcoxon signed rank test between the 500 correlation values for
the two combinations of regularizer and loss function in the preceding rows or columns.
Based on the p-values there is a statistically significant di↵erence between absolute loss
predictions and squared loss predictions and between k-support and LASSO with the
squared loss in cocaine subjects only.

Voxel Selection Stability, D>N, Conflict e↵ect on Reaction Time
Control Subjects

Norm / Loss Squared Absolute
LASSO 0.0004 0.0007
k-support 0.0029 0.0018

Cocaine Subjects
Norm / Loss Squared Absolute
LASSO 0 0.0023
k-support 0.0058 0.0734

Table 3. Voxel Selection stability over 500 random permutations of the samples for
drug > neutral using the limbic ROI, for all combinations of regularizers and loss
functions. The fraction of voxels which are selected for more than 50% of the 500 trials
are presented. The higher values reported for k-support norm indicate that it makes
more stable voxel selection than LASSO over di↵erent training sets.
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no guarantee of consistency in feature selection across di↵erent splits of the data
samples into training and test sets. In all cases the fraction of non-zero weights
selected by the k-support norm is higher than that of LASSO, indicating that
the k-support norm method leads to more stable solutions as compared to those
obtained with LASSO.

Voxel Selection Stability, 50 >0 , Conflict e↵ect on Accuracy
Control Subjects

Norm / Loss Squared Absolute
LASSO 0.0004 0.0050
k-support 0.0037 0.0083

Cocaine Subjects
Norm / Loss Squared Absolute
LASSO 0.0008 0.0013
k-support 0.0223 0.0122

Table 4. Voxel Selection stability over 500 random permutations of the samples for
50 > 0 using the Basal Ganglia, Thalamus ROI, for all combinations of regularizers
and loss functions. The fraction of voxels which are selected for more than 50% of the
500 trials are presented. The higher values reported for k-support norm indicate that
it makes more stable voxel selection than LASSO over di↵erent training sets.

5 Discussion

In our experiments, in almost all cases, the k-support norm outperforms LASSO
in predicting the behavioral measures given fMRI data when combined with
squared loss, while when combined with the absolute loss, the predictive accu-
racy of the two regularizers does not di↵er significantly. The absolute loss led to
higher predictions than squared loss for both regularizers for almost all cases.
The LASSO leads to sparse solutions, since it tends to pick one feature per group
of correlated features. On the other hand, the k-support norm allows calibrating
the cardinality of the solutions and thus can select more interpretable group-
ings of correlated features and also leads to more stable results across di↵erent
training sets. Thus, our results support the further exploration of the k-support
norm for fMRI analysis.

We also provide further evidence to support the I-RISA model of drug addic-
tion, whereby the skew in SA in cocaine abusers, as indexed by fMRI response
to drug words and monetary rewards, two motivationally salient stimuli, is pre-
dictive of RI, as indexed by response slowing and accuracy on a task requiring
inhibitory control (the color-word Stroop). Specifically, we show that in cocaine
users, response to drug words in voxels located in limbic brain regions, such
as the anterior insula and ACC implicated in emotion processing and emotion
regulation, was predictive of slower responses on the RI task (Exp. 1), while
response to money in voxels located in reward-related brain regions, such as the
putamen implicated in habits, was predictive of lower accuracy on the RI task
(Exp. 2).
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(a) Most predictive voxels in Exp. 1 using the k-
support norm with the Absolute Loss

(b) Most predictive voxels in Exp. 1 using the LASSO
with the Absolute Loss

(c) Most predictive voxels in Exp. 2 using the k-
support norm with the Squared Loss

(d) Most predictive voxels in Exp. 2 using the LASSO
with the Squared Loss

Fig. 1. Visualization of the most predictive voxels in Exp. 1 and Exp. 2 over the 500
permutations, where red indicates positive, blue indicates negative in the relationship
between the tasks. The degree of sparsity of the solution can be tuned with the k-
support norm, thus leading to models ((a), (c)) that are easier to interpret than those
of LASSO ((b), (d)). (Best viewed in color)
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Abstract. Radiological assessment of brain disease progression and re-
sponse to therapy is often performed with repeated MRI scans acquired
every few weeks/months. In these longitudinal studies, each scan is ac-
quired anew without taking into account the information present in pre-
vious scans. However, many image regions remain unchanged from one
time point to the next, making the difference image between the time
points sparse. We present a new algorithm that speeds up the MR ac-
quisition process of the repeated scan by using the data acquired in the
baseline scan of the same patient. Our method uses the baseline scan
to identify regions of interest in the repeated scan. These regions are
partially acquired, followed by reconstruction process that speeds up
the entire scanning procedure. Our experimental study on 16 pairs of
baseline/follow-up MR scans shows that the image quality of the MR
scans produced by our method with a speedup factor of up to 3.5 are
within the imaging variability of the scanner.

1 Introduction

Radiological assessment of brain disease progression and response to therapy is
often performed with repeated MRI scans acquired every few weeks/months [1,
2]. The MR scanning protocol consists of several pulse sequences, resulting in var-
ious imaging contrasts such as T1 and T2 weighted images. At each time point,
an entire, multi-sequence scan is acquired anew without taking into account the
information present in the previous scans. However, many image regions remain
unchanged from one time point to the next. This results in unnecessarily long
scanning times. Our hypothesis is that the difference between the current scan
and the previous scan data can be sparse, and the previous scan can be advan-
tageously used to speed up the scanning time of a repeated scan with minimal
compromise of the image quality.

During the scan acquisition, the MR signals are stored in a spatial frequency
domain called k-space [3]. The speed at which the k-space values can be acquired
is inherently limited by the required image contrast, resolution and coverage,
the properties of human tissues, hardware limitations, and safety issues [4]. The
demand for multi-sequence MRI under these fundamental speed limits has given
rise to plethora of methods for MRI speed-up.
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Fig. 1: FLAIR (left) and
contrast-enhanced T1 (right)
full-time scanning baseline
(top) and repeat (middle)
slices are presented vs. fast
acquired one (bottom), with
a speed-up factor of 3.5. Note
that the images are very simi-
lar with the exception of very
small artifacts, indicated by
the arrows. The reconstruction
quality of contrast-enhanced
T1 (T1c) images falls below
that of FLAIR images, due
to changes in contrast agent
injection rate between baseline
and repeated scans.

Methods for speeding-up MR acquisition with existing hardware are mostly
based of partial k-space acquisition. This approach consists of selectively sam-
pling the k-space followed by the estimation the missing k-space samples using
a prior knowledge on the image. Keyhole methods update data in the center of
the k-space more frequently than in other parts, thus providing high temporal
resolution but lower spatial resolution [3]. Methods for fast dynamic MRI use
the previous image frames in the time-series to complete the missing k-space
values [5, 6]. However, these methods compromise the spatial coverage and/or
spatial image resolution.

In Compressed sensing (CS) MRI [7, 8], the basic premise is that MRI can
be sparsely represented in a transform domain, thereby requiring only a subset
of the k-space for reconstruction. The sparsity of MRI in different transform
domains has been used by others for various applications. For example, Bilgic et
al. [9] exploit the fact that certain characteristics of the scanned object do not
change across pulse sequences. They propose a reconstruction algorithm that
relies on Bayesian compressed sensing to jointly reconstruct a set of images from
under-sampled k-space data.

One concept that has not been previously researched is the use of the pa-
tient’s baseline scan to speed up the acquisition of his/her repeated scan. In
many clinical diagnostic applications, patients are longitudinally scanned to de-
termine pathology changes between time points and to evaluate treatment effi-
cacy. In most cases, there is substantial similarity between the baseline and the
repeated scans. The changes usually occur in a confined region around the tumor
or pathology, while the rest of the image remains the same. Consequently, the
data from the baseline scan can be advantageously used to speed up the scan-
ning time of a repeated scan without compromising image quality. Fig. 1 shows
representative results of our method.
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In this paper we present a new method to effectively exploit the data from
the baseline scan to reduce the acquisition time of the repeated scan. The main
contributions of this paper are: 1) the use of baseline scan data for repeated scan
acquisition speed-up; 2) no compromise on image quality in clinically important
regions; and 3) experimental results obtained from 16 MR clinical brain show
reliable reconstruction results with speedup factor of 3.5 or less. To the best of
our knowledge, this is the first attempt to speed-up an MR scan with the same
patient’s baseline scan.

2 Method

The inputs to our method are the baseline brain scan of the patient, consisting
of two or more MRI pulse sequences with several contrasts, such as T1-weighted
and T2-weighted, and a single pulse sequence from a repeated scan. The out-
puts are the remaining imaging contrasts of the repeated scan, acquired in fast
acquisition mode. In the following, we assume for simplicity that: 1) the same
MR pulse sequences are acquired in the baseline and repeated scans; 2) all the
pulse sequences have same number of slices, denoted by Ns; 3) the k-space is
sampled with Cartesian sampling trajectories; 4) the differences between scans
of the same patient are mainly due to pathological changes and; 5) the acquisi-
tion of the repeated scan is spatially matched to the baseline scan. We discuss
the validity of these assumptions later, in Section 4.

The method consists of two step. First, we use the first sequence in the
repeated scan to detect the changes from the baseline scan so that slices with
significant changes will be acquired in full-time mode. Second, we acquire slices
that are similar to their corresponding ones in the baseline scan in fast acquisition
mode, thus speeding up the entire scanning process.

2.1 Detection of slices for fast acquisition

This step automatically detects slices with significant changes based on the base-
line scan and the first imaging contrast of the repeated scan. We compare the
slices with the following measure. The difference between two corresponding
si-th slices of these pulse sequences is defined as:

Idiff (si) = If (si)− Ib(si) (1)

where Ib and If are the corresponding baseline and repeated matching imaging
contrasts.

We focus on the outliers of Idiff (si) to define a measure of difference between
the scans. In the literature we find many approaches for outliers detection, such
as Chauvenet’s criterion and Grubbs’ test. For simplicity, we use the interquartile
range method [10] to identify and reject outliers from data. The outliers in
Idiff (si) are the voxels O = {o1, ..., oN}.

We then perform a connected components analysis on O to obtain L =
{l1, ..., lK} regions of outliers. Regions with less than Nv voxels are automati-
cally rejected and considered to be spatially isolated outliers. For the remaining
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regions, Ib(si) and If (si), we model the grey-level distribution of pathologies
with a Gamma distribution with parameters k and θ [11]. Since there is no
closed form for the parameter’s Maximum Likelihood Estimation, we use the
approximation in [12]:

k̂ =
a0 + a1Q+ a2Q

2

Q(b0 + b1Q+Q2)
(2)

θ̂ =
1

k ·Nlj

Nlj
∑

i=1

xi; (3)

where X = {xi}
Nlj

i=1
are the outliers of group lj , Q is :

Q = ln(
1

Nlj

Nlj
∑

i=1

xi)−
1

Nlj

Nlj
∑

i=1

ln(xi) (4)

and ai, bi are as defined in [12]. We estimate these values for both the baseline and
the repeated scans imaging contrasts, since we model change as either progression
or regression of the pathology.

As was observed by Prastawa et al. [11] the closer the distribution of the
outliers group is to the Gamma distribution, the higher the probability that its
slice contains changes in pathology. Therefore, to identify outliers that repre-
sent pathology changes, we measure the distance of every group of voxels from
Gamma distribution defined by the estimated parameters of the group with the
KL-distance [13]. The difference measure for slice is the sum of the measurements
of different regions in the slice.

This results in a measure of difference between a previously acquired slice
and its corresponding repeated scan slice. Slices are then sorted by this measure,
and the Nfull most different slices will be fully scanned in the remaining pulse
sequences to avoid compromising image contrast in them. The remaining slices,
Gfast

s = s1, ..., sNfast, will be scanned in a fast scanning procedure. The user-
defined parameter Nfull defines the trade-off between the fast acquisition and
the number of slices acquired slices in full image scan mode.

2.2 Fast acquisition of selected slices

The input to this step is a list of slices to be acquired in the fast acquisition mode.
For these slices, the k-space lines are randomly sampled with variable density, so
that the sampling density is higher near the k-space origin. The missing k-space
lines are taken directly from the baseline scan.

Specifically, let Sp
i (km) and Sr

i (km) be the k-spaces of i-th slice of the baseline
and the repeated scans, and let m the index of the phase encode line number
km. Let C be the set of random sampled k-space lines and let Nk be the number
of items in C. The estimation of the k-space for the slices rapidly acquired is:

Ŝr
i (km) =

{

Sr
i (km) km ∈ C

Sp
i (km) otherwise

(5)
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for i ∈ Gfast
s . The inverse Fourier transform of Ŝr

i is the estimated i-th image
slice. The estimated repeated scan, Îf , consists of Nfull full-time acquired slices
and Nfast estimated slices.

2.3 Speed-up factor computation

We compute the speedup of our method at the pulse sequence level, where we
assume that the acquisition of a single line in the k-space takes the same time
for all pulse sequence types. Let Nl be the number of k-space lines required for
Nyquist rate acquisition. We define the speedup factor by the time required to
acquire a pulse sequence at Nyquist rate, which is the number of slices, Ns,
times Nl, divided by the acquisition time of the new method. This value consists
of the number of full-time acquires slice, Nfull times Nl, plus the number of
fast-acquired slices, Nfast times the number of k-space lines acquired with the
proposed method, Nk:

F =
Ns ·Nl

Nfull ·Nl +Nfast ·Nk
(6)

For example, with typical values of Ns = 40, Nl = 320, Nfull = 7, Nk = 43, our
method can acquire a scan 3.5 times faster than sampling at Nyquist rate.

3 Experimental Results

We conducted a retrospective quantitative evaluation of our method with clini-
cal MRI datasets. Experiments involved six patients, three of them with Optic
Pathway Gliomas (OPG) and three with Glioblatoma Multiforme (GBM). Each
patient was scanned with a 1.5T General Electric MRI system, with a multi-
sequence protocol at intervals of several months at the Tel-Aviv Medical Center,
Israel. In total, 16 pairs of scans were acquired. Each scan consisted of T2-
weighted, contrast-enhanced T1 (T1c), and FLAIR images. Each dataset has
512× 512× 38 voxels with voxel size of 0.5mm× 0.5mm× 5.0mm.

Studies have shown that T2-weighted images are most sensitive for detecting
brain pathology [14]. Therefore, we set this image contrast to be fully acquired
with no speed-up in the repeated scan. The acquisitions of the remaining imaging
contrasts, T1c and FLAIR were accelerated with our method.

The k-space samples of the scans were generated synthetically from images
obtained at the Nyquist rate by applying an inverse Fourier transform. We set
the minimum number of outlier voxels in a group to Nv = 100 and the number of
slices to be fully scanned to Nfull = 10. The parameters Ns = 38 and Nl = 512
are explicitly derived from the dimensions of the data. In our experiments, data
intensity values were normalized to the range of [0, 1] to compensate for grey-level
variations between time-points. Experiments were performed with the original
data, where no noise was added or filtered.

We performed two experiments. First, we set Nk = 15 to obtain a speed-
up factor of method to 3.5 and visually examined the results. Fig. 1 illustrates
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the resulting images. Note that the images are very similar to each other, with
the exception of very small artifacts which arise from misregistration errors and
grey-level differences between the baseline and repeated scans.

In the second experiment, we examined values of Nk in the range of 2 and
200, (corresponding to speed-up factors in the range of 1.8 and 3.7), and quanti-
tatively evaluated the performance of the method as a function of the speed-up
factor in terms of root mean square error (RMSE) vs. full-time scanning at
Nyquist rate. The RMSE is defined as:

RMSE =

√

√

√

√

∑

j(If (j)− Îf (j))2
∑

j(If (j))
2

(7)

where j is the spatial slice index.
To provide a RMSE reference value, we additionally computed the RMSE

between a different set of 16 pairs of registered scans acquired at Nyquist rate
of patients who exhibited no radiological changes between scans. The average
RMSE values measure the variability between two scans of the same patient in
which there are no actual changes between scans. The resulting values, shown
as the red and pink horizontal lines in Fig. 2, are RMSET1c

v = 1.2 × 10−2 for
the contrast-enhanced T1, and RMSEFLAIR

v = 9.5× 10−3 for the FLAIR.
Fig. 2 shows the tradeoff between the speed-up factor and the RMSE. The

horizontal lines show the reference RSME values described above. We observe
that for a speed-up factor of up to 3.5 the RMSE values are within the variability
of the scanner. Our method’s performance is higher for the FLAIR images than
for the T1c images because the grey-level values of the T1c images are highly
depend on the contrast agent injection rate during acquisition, which may vary
between scans. As a result, the k-space values of the T1c baseline scan used to
estimate part of the repeated scan’s k-space of this image produce some imaging
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Fig. 3: Reconstruction results (top) and absolute difference images vs. full-time
scanned image (bottom) of T1c representative image, for speed-up factors of
(left to right): 1.8, 2.6, 3.4 and 3.77. The color bars at the bottom represent the
grey level percentage estimation error divided by 100.

artifacts, despite the normalization performed in our experiments. Fig. 3 shows
reconstruction results of T1c for representative speed-up factors.

4 Discussion and Conclusions

We have described a new method for MR acquisition speed-up of a repeated
brain scan. Our method finds the most similar slices between the baseline scan
and the repeated scan and speeds-up their acquisition in the repeated scan. Our
results show that a speedup of up to 3.5 is achievable within the imaging scanner
variability. To the best of our knowledge, this is the first attempt to speed-up
an MR scan with baseline patient scans.

We now address two practical issues regarding the implementation of the
method. First, the method assumes that the baseline and repeated scans are
spatially matched. This spatial matching can be obtained by reproducing the
past scan’s slice positions for the scan being acquired. This feature is currently
offered by some MRI vendors [15].

Second, we assume that changes between baseline and repeated scans are
caused due to pathology changes. However, changes may be the result of dif-
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ferences in field inhomogeneity, coil properties, different scanners, different se-
quences, etc. In our method we normalize the grey level intensity values of the
scans to match the same scale, in order to minimize the effect of external re-
sources on the changes between the scans.

We note that in the special case of longitudinal studies, scans are in many
cases acquired in the same scanning site with the same scanning protocol to
minimize the effect of external parameters on the resulted clinical follow-up.
This assumption, together with refined image normalization, is sufficient to avoid
reconstruction artifacts which may arise due to mixing k-space samples of two
scans acquired with a few months gap.

While our method may compromise on image quality to speed up the acqui-
sition process, this compromise is limited to regions that may have lower clinical
relevance, as slices with high clinical importance are fully scanned. This is in
contrast to existing methods that make the compromise across the entire image.

In addition, the proposed method is independent with and complimentary
to CS methods for rapid MRI and can work in conjunction with them to speed-
up the acquisition. Future work includes speeding-up additional pulse sequences
and implementing our method on a real MR scanner.
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Abstract. There is great interest in developing imaging-based methods
for diagnosing neuropsychiatric conditions. To this end, multiple data-
sharing initiatives have been launched in the neuroimaging field, where
datasets are collected across multiple imaging sites. While this enables
researchers to study the disorders of interest with substantial sample
size, it also creates new challenges since the data aggregation process in-
troduces various sources of site-specific heterogeneities. To address this
issue, we introduce a multitask structured sparse support vector machine
(SVM) that uses resting state functional connectomes (FCs) as the fea-
tures for predicting diagnostic labels. Specifically, we employ a penalty
that accounts for the following two-way structure that exists in a mul-
tisite FC dataset: (1) the 6-D spatial structure in the FCs captured via
either the GraphNet, fused Lasso, or the isotropic total variation penalty,
and (2) the inter-site structure captured via the multitask `1 `2-penalty.
To solve the resulting high dimensional optimization problem, we intro-
duce an extension to a recently proposed algorithm based on the alter-
nating direction method. The potential utility of the proposed method
is demonstrated on the multisite ADHD-200 dataset.

Keywords: Multitask learning, structured sparsity, support vector ma-
chine, resting-state fMRI, alternating direction method

1 Introduction

In this work, we are interested in a supervised classification problem, where
the goal is to predict the diagnostic status of an individual using functional
connectomes (FCs) derived from resting-state fMRI (rs-fMRI) [4]. Fortunately,
with various data sharing projects emerging in the neuroimaging community [12,
15], we have access to training data of unprecedented sample size. However, such
community-wide collaborative e↵orts typically involve aggregating data from
multiple imaging sites, which introduces several sources of systematic confounds,
such as variability in the scanner quality, image acquisition protocol, subject
demographics, etc. In order to e↵ectively make use of these multisite datasets, it
is important to train the classifiers in a way that accounts for these site-specific
heterogeneities. To this end, we propose a classification framework that adopts
a multitask learning (MTL) approach [5, 8, 10, 13].
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The idea behind MTL is to jointly train multiple tasks in order to improve
classification performance, under the assumption that the tasks are related to
each other in some sense. Recently, MTL methods have been successfully applied
in brain decoding [8,13], where the participants from a multi-subject fMRI study
are treated as the tasks. The underlying assumption here is that the brain regions
that are activated from a stimulus will share similar patterns across di↵erent
tasks/subjects. In contrast to these works, the method we propose in this work
treats the sites from which the rs-fMRI scans are collected as the tasks.

2 Material and Methods

To generate the FCs, we used the grid-based parcellation scheme adopted by
Watanabe et al. in [16], which involves 347 nodes defined on the standard MNI
template; Fig. 1 provides a schematic representation of this parcellation scheme.
Each nodes represents a 15mm diameter sphere with 33 voxels, and is placed
throughout the entire brain with a spacing of 18 18 18mm (voxel resolution
is 3 3 3mm). A regional time-series is assigned on each node by spatially av-
eraging the BOLD signals, and FCs of size p 347

2

60, 031 are obtained by
computing all pairwise Pearson correlations between the time-series of the nodes.

2.1 Supervised Learning and the Multitask Framework

Šuppose we are given K supervised learning tasks, where for each task k 1, . . . ,
K, we are given nk input/output pairs x

k
i , y

k
i

nk

i 1

Rp 1 nk . In the con-

text of our work, xk
i and yki represent the FC and the diagnostic label of the i-th

subject from the k-th site, respectively. The goal is to jointly learn K linear clas-
sifiers of the form fk x sign w

k,x , where w1, . . . ,wK Rp are task-specific
weight vectors obtained by solving the following optimization problem:

argmin
w1,...,wK Rp

K

k 1

1

nk

nk

i 1

` yki w

k,xk
i R w

1, . . . ,wK .

The first term here is the pooled empirical risk of a convex margin-based loss
` :R R and the second term R :RpK R is a penalty function that enforces
certain kind of structure on the weight vectors. In this work, we employ the hinge-
loss ` t max 1 t, 0 from the well known support vector machine (SVM)
classifier, although other convex margin-based losses can be used as well.

For brevity, we define a functional L Y

k
X

k
w

k : nk

i 1

` yki w

k,xk
i which

aggregates the empirical loss from the k-th task, where X

k Rnk p de-
notes the design matrix for the k-th task and Y

k 1 nk nk is defined as
Y

k : diag yk
1

, . . . , yknk
. Also for conciseness, let w RpK denote the vector ob-

tained by stacking the weight vectors w

k K
k 1

together. In this work, we focus on

convex penalty functions of the form: R w � K
k 1

R
1

w

k �R
2

w , where
�,� 0 are hyperparameters. Thus the objective function can be written as:

argmin
w RKp

K

k 1

1

nk
L Y

k
X

k
w

k �
K

k 1

R
1

w

k �R
2

w . (1)
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Fig. 1: The brain parcellation scheme adopted in this work. The green regions
represent (pseudo)-spherical nodes each encompassing 33 voxels.

The first penalty R
1

allows us to encode prior knowledge about the intra-task
structure of the data. While various penalties such as GraphNet (GN), fused
Lasso (FL), and isotropic total variation (TV) have been applied successfully in
the fMRI literature [1,6,9,16], these penalties by themselves do not account for
the inter-task structure of the dataset (FL is also known as anisotropic total vari-
ation). Thus a second penalty R

2

is included in (1), which allows us incorporate
a notion of “task-relatedness” by enforcing some form of structure on w.

For the intra-task penaltyR
1

, following the recent work of [16], we account for
the 6-D spatial structure of FCs (defined by pairs of points in 3-D) by employing
either the GN or FL penalty, which can be expressed in the following form:

R
1

w

k 1

q
Cw

k q

q

GraphNet if q 2

Fused Lasso if q 1 ,

where C denotes a 6-D finite di↵erencing matrix. The idea behind GN and FL
is to promote spatial contiguity by penalizing the di↵erences among neighboring
coordinates of the FC. Similarly, the TV penalty, which is a rotationally invariant
counterpart of the FL penalty, can also be used to encourage spatial contiguity;
see [9] for its closed form expression.

2.2 Structured Sparsity with Group Variable Selection

We propose to integrate the structured sparsity framework introduced in [16]
with the popular multitask `

1

`
2

-penalty [5, 10]. Specifically, for the inter-task
penalty R

2

, we use R
2

w

p
j 1

wj
2

, which is the so-called `
1

`
2

-penalty.

Here wj RK is a vector formed by stacking the j-th weight vector coe�cients
across the K tasks. This penalty has the appealing group variable selection prop-
erty [5, 10], which promotes learning features that are relevant across all sites,
thereby simplifying interpretation of the selected features. At the same time,
the actual weights associated with a given correlation can vary across site, in
contrast to training a single classifier over a pooled dataset.

2.3 Optimization Algorithm

To solve the proposed large scale optimization problem, we apply the alternating
direction method of multipliers (ADMM) algorithm [2] introduced in [16], but
with a minor modification. The complete algorithm is outlined in Alg. 1. We
note that this section focuses on GN and FL, but the ADMM algorithm for TV
di↵ers only in line 5 of Alg. 1, but the details are omitted for lack of space.
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Alg. 1 ADMM for Multitask Structured Sparse SVM

1: Initialize variables, assign hyperparameters �, � 0
2: repeat

3: for k 1, . . . ,K do

4: wk Xk TXk 2Ip
1 Y kXk T vk

1 uk
1 vk

2 uk
2 AT vk

4 uk
4

solve using matrix inversion Lemma

5: vk
3

apply Equation (3) if q 1 (FL)

⇢ �B ⇢I 1C vk
4 uk

3 if q 2 (GN)

6: vk
1 Prox` ⇢nk

Y kXkwk uk
1 Prox⌧` t :

t if t 1
1 if 1 ⌧ t 1
t ⌧ if t 1 ⌧

7: vk
4 C C Ip̃

1

C vk
3 uk

3 Awk uk
4 solve using FFT

8: end for

9: for j 1, . . . , p do

10: v
2,j vsoft� ⇢ wj u

2,j vsoft⌧ t : max 1 ⌧
t 2

, 0 t, t RK

11: end for

12: for k 1, . . . ,K do dual variable update

13: uk
1 uk

1 Y kXkwk vk
1

14: uk
2 uk

2 wk vk
2

15: uk
3 uk

3 vk
3 Cvk

4

16: uk
4 uk

4 Awk vk
4

17: end for

18: until stopping criterion is met

To apply Alg. 1, we employ the data augmentation masking strategy that
was proposed in [16]. In brief, the idea behind this method is that as it stands,
the ADMM algorithm for solving the objective function (1) with the GN, FL, or
TV penalty will require the inversion of the Laplacian matrixC

T
C, which is pro-

hibitively large. Thus we rewrite the GN/FL penalty as R
1

w

k
BCAw

k q
q ,

where A is an augmentation matrix, C is the finite di↵erencing matrix for the
augmented w

k, and B is a diagonal masking matrix that ensures the penalty
remains una↵ected, i.e., BCAw

k q
q Cw

k q
q. This results in a new Laplacian

matrix C

T
C, which possesses a special structure known as block-circulant with

circulant-blocks, whose matrix inverse can be evaluated e�ciently via the fast
Fourier Transform (FFT) (line 7, Alg. 1; see [16] for more details).

Using this augmentation masking strategy, we can rewrite the objective as:

min
w

K

k 1

1

nk
L Y

k
X

k
w

k �

q

K

k 1

BCAw

k q

q
�

p

j 1

wj
2

,

which can be converted into the following canonical ADMM form [2]:

min
wk,vk

1 ,v
k
2 ,v

k
3 ,v

k
4

K

k 1

1

nk
L v

k
1

�

q

K

k 1

Bv

k
3

q

q
�

p

j 1

v2,j
2

s.t. Y k
X

k
w

k
v

k
1,w

k
v

k
2,Cv

k
4 v

k
3,Aw

k
v

k
4 k 1, . . . ,K. (2)
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It is straightforward to show that the above two problems are equivalent, and
Alg. 1 follows from applying the standard ADMM iteration on (2). We emphasize
that all the updates in Alg. 1 can be carried out e�ciently in analytical form.
For example, line 5 in Alg. 1 is a simple diagonal matrix inversion in the case of
GN, and for the FL case we have the following closed form update:

v

k
3 s

soft� ⇢ C v

k
4 u

k
3 s

if Bs,s 1

C v

k
4 u

k
3 s

if Bs,s 0,
(3)

where soft⌧ t : max 1 ⌧
t , 0 t denotes the soft-threshold operator and s in-

dexes the s-th element of a vector. Finally, we note Prox⌧` t in line 6 is an
elementwise update corresponding to the proximal operator of the hinge-loss.

3 Experiments

The ADHD-200 Dataset. We used the publicly available ADHD-200 competi-
tion dataset [15], which contains rs-fMRI scans of subjects diagnosed as either
typically developing (TD) or with ADHD. The dataset is collected across seven
sites and consists of two parts: a training set and a validation test set (Brown site
excluded from our study as the subject labels are not released). Analyses were
limited to participants with: (1) MPRAGE anatomical images with consistent
near-full brain coverage with successful registration; (2) complete phenotypic in-
formation for main phenotypic variables (diagnosis, age, handedness); (3) mean
framewise displacement (FD) within two standard deviation (SD) of the sample
mean; (4) full IQ within two SDs of the ADHD-200 sample mean. After applying
these sample selection criteria, we analyzed resting state scans from 628 indi-
viduals (TD 416, ADHD 212) in the training set and 106 subjects (TD 65,
ADHD 41) in the test set. Functional images were reconstructed, slice-time
corrected, motion corrected, and co-registered to the MNI space using SPM8.

Experimental Results. To assess the validity of the proposed method, we com-
pared the performance of various SVM-based classifiers using the ADHD-200
dataset, where resting-state FCs were produced using the parcellation scheme
described in Sec. 2. For the intra-task penalty R

1

, we compared four di↵erent
regularization schemes: Elastic-net (EN) [5] with R

1

w

1

2

w

2

2

, GN, FL, and
TV. For the inter-task penalty R

2

, we compared three di↵erent approaches:

1. Pooled `
1

: a single classifier is trained on the entire ADHD-200 dataset
(R

2

w w

1

with w Rp as K 1).
2. Single-task `

1

`
1

: equivalent to training separately across sites due to the
separability of the penalty across sites (R

2

w

p
j 1

wj
1

.
3. Multitask `

1

`
2

: jointly train the classifiers by solving (1).

The regularization parameters �, � are tuned by conducting a 5-fold cross-
validation (CV) on the training set over the following two-dimensional grid:
�, � 2 13, 2 12, . . ., 2 3 . The final weight vector estimate is obtained by re-
training the classifiers on the entire training set using the �, � values
that maximized the CV classification accuracy; for validation, we predicted
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the labels of the test set subjects using this weight vector. All methods
were solved using ADMM with the algorithm terminated when the condition
w

new

w

old

2

5 10 3

w

old

2

was met or the iteration count reached 400.
To evaluate the quality of the classifiers, we analyzed the following set of

performance measures for both the 5-fold CV and the validation test set results:

– Classification accuracy (ACC)
– Area under the ROC curve (AUC)
– Balanced score rate (BSR) (sensitivity+specificity) 2
– Stability score (Stab.) a measure of feature selection stability (see [1,14])
– P-value (PVAL) computed from binomial test.
– Sparsity level (SP%) 100 # non-zero features

pK

The AUC and BSR are analyzed since ACC by itself can be misleading when
the dataset labels are imbalanced (ACC, AUC, and BSR are averaged across the
tasks); the ROC curves are constructed by varying the threshold of the classifiers.
Stability score is a measure introduced in [14] which quantifies the stability of
the features selected across the CV folds (see [1, 14] for its precise definition).
Classifier performance on the test set was compared to random guessing via a
binomial test based on a binomial distribution B p,n with p 0.5 and n 109
samples, with PVAL evaluated via an one-sided binomial test [7]; the alternative
approach of permutation test was not pursued due to its severe computational
cost. Finally, sparsity level is the fraction of features selected in the final model.

Table 1 presents the classification results from the 5-fold CV and validation
on the test-set, and Fig. 1 displays the corresponding ROC curves. These re-
sults demonstrate that training a single classifier via the “pooling” approach
yields the worst performance in terms of accuracy, AUC, and BSR, suggesting
that blindly aggregating the datasets across di↵erent sites can be problematic
for accurate disease classification. Comparison between the single-task and the
multitask approaches shows that the `

1

`
2

-penalized approach yields superior
performance in terms of AUC, although no striking di↵erence can be observed
in terms of accuracy and BSR.

In addition to the performance gain with the `
1

`
2

-penalty, the set of weight
vector estimates ŵ

k K
k 1

all share a common support of length p with this mul-
titask approach. This is invaluable for interpretation, as the selected features
can be viewed as edges that are informative across all sites. For visualization,
we grouped the indices of this support according to the network parcellation
scheme proposed by Yeo et al. in [17], and reshaped them into a 347 347 sym-
metric matrix with zeroes on the diagonal. The resulting support matrices for
the EN+`

1

`
2

and the FL+`
1

`
2

-penalized SVM are presented in Fig. 3 (re-
sults for GN+`

1

`
2

and TV+`
1

`
2

were very similar to FL+`
1

`
2

). An interest-
ing observation here is that the support structure from the FL+`

1

`
2

-penalized
SVM shows concentrated connectivity patterns in the intra-frontoparietal (6-6)
and the intra-default network (7-7) regions; Fig. 3 provides a brain space
representation of these connections (figures generated using BrainNet Viewer,
www.nitrc.org/projects/bnv/). These network regions are frequently reported
to exhibit disrupted connectivity patterns in resting state studies of ADHD [3],
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Table 1: The classification results from the 5-fold CV and the validation test-set.

CV (628 subjects) Test-set (106 subjects)
ACC AUC BSR Stab. ACC AUC BSR PVAL SP%

EN (`
1

) .689 .687 .630 .277 .557 .617 .476 .143 2.54%
GN (`

1

) .704 .708 .631 .253 .594 .608 .494 .032 28.88%
FL (`

1

) .688 .720 .586 .059 .632 .592 .530 .004 64.85%
TV (`

1

) .701 .715 .620 .005 .623 .608 .521 .007 90.32%
EN (`

1

`
1

) .709 .752 .649 .276 .623 .609 .530 .007 0.28%
GN (`

1

`
1

) .713 .750 .652 .165 .642 .613 .573 .002 67.14%
FL (`

1

`
1

) .715 .750 .659 .329 .632 .634 .547 .004 1.30%
TV (`

1

`
1

) .718 .753 .661 .345 .642 .654 .550 .002 1.61%
EN (`

1

`
2

) .720 .754 .657 .217 .651 .645 .556 .001 0.25%
GN (`

1

`
2

) .720 .766 .657 .320 .642 .668 .546 .002 1.03%
FL (`

1

`
2

) .718 .766 .653 .315 .642 .673 .546 .002 0.79%
TV (`

1

`
2

) .720 .766 .658 .316 .642 .672 .546 .002 0.80%

CV (628 subjects) Test-set (128 subjects)
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Fig. 2: Table 1 classifiers’ ROC (`1 `1-curves omitted to improve curve visibility).

although the accuracies obtained from our classifiers are not at the level where
the selected features can be interpreted as reliable ADHD biosignatures.

Finally, we note that most of the accuracies reported on the validation test-set
in Table 1 exceeded the highest result from the actual ADHD-200 competition
(which was 61.54% [15]). However, there are two major caveats: (1) the results
in this work cannot be directly compared with the o�cial competition results
due to the subject screening procedure we applied on the test set (the criteria
such as the FD-based one is important for avoiding confounds from excessive
head motion), and (2) the participants in the actual competition were required
to predict the labels of 26 subjects from the Brown site, despite the fact that no
training data were provided from this site, making it harder to predict the labels
for these subjects. The second caveat also implies that most MTL methods,
including the `

1

`
2

-penalty employed in this work, cannot be applied since there
are no means to train a weight vector for a task whose data are not provided. An
alternative approach such as transfer learning [11] may be considered for this.
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Table 2: Network parcellation scheme of the brain proposed by Yeo et al. in [17].

Network membership Table ( is “unlabeled”)

1. Visual 2. Somatomotor 3. Dorsal Attention 4. Ventral Attention
5. Limbic 6. Frontoparietal 7. Default 8. Striatum
9. Amygdala 10. Hippocampus 11. Thalamus 12. Cerebellum

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
×

×

(a) Multitask Elastic-net SVM result

1
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2
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3
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4
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7
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8
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9

10

10

11

11

12

12
×

×

(b) Multitask Fused Lasso SVM result

Fig. 3: Weight vectors estimated from the EN+`
1

`
2

and FL+`
1

`
2

-penalized
SVM. Left: support matrices of the selected features (rows/cols grouped by net-
work membership). Right: brain space representation of the selected edges in the
intra-frontoparietal (6-6: blue) and the intra-default network (7-7: red).

4 Conclusion

We presented a multitask structured sparse SVM, a multitask extension to
the connectome-based disease classification method introduced in [16], where
the imaging sites are treated as tasks. Experimental results on the multisite
ADHD-200 dataset suggest that the multitask approach using the `

1

`
2

-penalty
can provide improvement in classification performance over the naive pooling
approach, where a single classifier is trained on the entire multisite dataset.
In addition, the `

1

`
2

-penalty achieved higher AUC scores than the single-task
`
1

`
1

-penalty, and the group variable selection property of the multitask ap-
proach gives a more interpretable model by selecting the same set of features
across sites, which can be visualized compactly in brain space.
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Abstract. Among all the organs under cancer treatment, prostate is a
very important one in male pelvic region but very di�cult to segment,
due to the poor contrast of 3D CT images, invisible boundaries between
the prostate and its neighboring organs (e.g. bladder, rectum), and ar-
tifacts produced by prostate seeds etc. Furthermore, the same patient’s
organ conditions (e.g. size, shape and location) can significantly change
throughout the whole treatment course. In this paper, we propose a
learning-based approach to deal with both inter-patient and intra-patient
variation for auto-contouring the prostate in adaptive radiotherapy. In
general, the method starts with learning population-based characteris-
tics, and adaptively incorporate patient-specific knowledge as the same
patient’s subsequent treatment images become available. Specifically, we
learn a population-based boundary classifier and a sparse shape dic-
tionary based on a set of already contoured patients. For intra-patient
treatment tasks, previously segmented prostates of the same patient are
utilized to adaptively update the boundary classifier and sparse shape
dictionary. The updating process is fully automatic and completely o↵-
line, which won’t a↵ect run-time e�ciency. The proposed method has
been extensively evaluated on 44 3D CT images of 11 patients, each
with more than 3 daily treatment images. Our method produces supe-
rior performance over two other state-of-art auto-contouring methods,
which is promising for online adaptive treatment planning.

1 Introduction

In radiotherapy procedures, a patient needs to take a series of 3D CT images
for treatment planning, re-planning, online dose delivery throughout the whole
treatment course. To create a new treatment plan, a physician often needs to
contour the image from scratch. It is a time consuming task which often in-
duces large inter/intra institutional variation. Ideally an automatic contouring
method not only reduces contouring time for the physicians, but also improves
the accuracy and consistency for treatment. Among all the organs under cancer
treatment, prostate is a very important one in male pelvic region but very dif-
ficult to segment. Major challenges for inter-patient cases are the following: (1)
low contrast of 3D CT images, which makes large portion of the prostate bound-
ary invisible (Figure 1), (2) image artifacts produced by prostate seeds (Figure



1 (a) (c)), and (3) large area of gas/feces/coil filling in the rectum (Figure 1
(b)(d)(e)). For intra-patient cases, the same patient’s organ condition may vary
a lot at di↵erent treatment times (Figure 2) due to (1) size of volume changes in
response to treatment, (2) relative position change between neighboring organs,
(3) shape deformation due to filling state of neighboring organs (e.g. bladder
or rectum). Therefore, the desired auto-contouring method should be capable of
handling both inter-patient and intra-patient variations. Additionally, the online
processing should be computationally light weighted to adapt to the fast pace
of online treatment procedures.

                  (a)                                 (b)                               (c)                               (d)                                (e) 

Fig. 1. Some prostate CT images from clinics: (a) an image with streaking artifacts,
(b) a patient with large rectum gas, (c) a patient with seeds causing bright spots and
streaking artifacts, (d) a patient with feces filling, (e) a patient with a rectum coil.

             (a)                                    (b)                

Fig. 2. An example of intra-patient variation of two images taken at di↵erent treatment
times. (a) a patient’s image at time t1, (b) the same patient’s image at time t2.

Intuitively, the contouring process can be made easier by considering the
same patient’s previous contours as prior knowledge/reference. However, cur-
rently when designing a new plan or during treatment, physicians usually do
not utilize the same patient’s previous plans. Even when previous plans are
used, they are incorporated by registration to map the previous contours to
the current image. One common method is rigid registration. This method only
provides a few degrees of freedom. Thus, the registered contours may not be
precise. Deformable registration [1][2][3][4] may be employed to improve the ac-
curacy by calculating non-linear organ deformations. In general, the accuracy of



the contours may depend on the number of reference images (atlases) used [4].
There is, however, an increased computational cost proportional to the number
of reference images (atlases), which makes it di�cult to use for online adaptive
planning. Alternatively, a few machine learning based methods [5][6][7] tried to
use context information [5] or several layers of feature abstraction [7] to make
the prostate region more discriminative for segmentation. They either focused
on inter-patient segmentation or intra-patient segmentation. In [7], the authors
evaluated those methods for prostate segmentation on MRI images and produced
promising results.

In this paper, we propose a unified learning-based framework to accommo-
date both inter-patient and intra-patient variations for adaptive radiotherapy. In
particular, a population-based boundary classifier and a population-based sparse
shape dictionary can be trained. The trained boundary classifier and the sparse
shape dictionary can then be used to perform auto-contouring in a patient’s
planning image. As more treatment images are collected, the system may au-
tomatically update the boundary classifier and the sparse shape dictionary to
incorporate patient-specific information. Once a new treatment image is received,
the system may perform auto-contouring of the interested organ on the fly. One
advantage of this approach is its high accuracy. In the online auto-contouring
stage, the method is able to achieve a mean Dice value of 0.93 for the prostate.
Another advantage of this approach is its ability to handle extremely low qual-
ity 3D CT images (e.g., Figure 12), since consistent artifacts/low quality can be
learned as part of the patient-specific knowledge. Additionally, this method is
computationally very fast when applying to a new scan. Because the learning
process of previous scans is completely o↵-line, which can be done any time when
the machine is vacant. Online auto-contouring takes the same amount of time
no matter how many previous images were used for training. This is an advan-
tage over deformable registration methods with multiple atlases, in which case
the amount of auto-contouring time increases with the number of atlases used.
The proposed learning-based prostate segmentation method has been extensively
evaluated on 44 images of 11 patients, each with more than 3 daily treatment
3D CT images. It produces superior performance over two other state-of-the-art
segmentation methods. The learning framework is very accurate and fast with
the flexibility of working on any quality images, which is well designed for online
adaptive radiotherapy in clinics.

In section 2, we will discuss the methodology in detail. In section 3, enormous
experimental results are given, which is followed by section 4 conclusions.

2 Methodology

Figure 3 shows the flowchart of this learning-based system. The top part shows
the components for o↵-line training/updating, while the bottom part shows the
online auto-contouring components. Algorithm flow involved in o↵-line train-
ing/updating is marked with red arrows. Algorithm flow involved in online
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Fig. 3. Algorithm flowchart. Algorithm flow involved in o↵-line training/updating is
marked with red arrows. Algorithm flow involved in online auto-contouring process is
marked with black arrows.

auto-contouring process is marked with black arrows. Details regarding each
component are discussed in the following:

2.1 Population-based Boundary Classifier

In order to detect the boundary surface of the prostate for a new image, we
first train a population-based boundary classifier. For each of the voxels being
detected, the job of the classifier is to make a decision as to whether the current
voxel “is” or “is not” on the boundary. From a set of patients’ images, we collect
positive and negative samples according to the manual contours provided by
experts. Boundary voxels on the contours are selected as positive samples, while
voxels far away from the contour are selected as negative samples. For each
training sample, rotation invariant 3D steerable features [8] are extracted and
stored as a feature vector. We use the random forest algorithm [9] to train the
boundary classifier on the collected samples. During online contouring stage, we
use the Demons [2] method with a single atlas to get the initial contour. For each
voxel on the surface of the initial contour, we apply boundary classification in a
neighborhood along the normal direction. The boundary classifier will return a
probability value for each voxel being searched. Then we select the one with the
highest probability as the new boundary location.



2.2 Population-based Sparse Shape Refinement

The detected 3D boundary from the boundary classifier is very noisy. Thus
a shape model is needed here to constrain the solution space. Among all the
recently promoted shape models, the sparse shape model [10][11][12][13] is known
to be able to handle complex shape variations, model non-Gaussian errors and
preserve local detailed information of the input image, which well fits our needs.
So we adopt this model to refine the detected boundary. Specifically, we first
construct a sparse shape dictionary from a set of patients. Once we have a new
input boundary shape, we use the dictionary as the shape prior to refine the
shape. In particular, it selects a sparse set of 3D shapes in the shape dictionary
and composes them together to represent the input shape. This model leverages
two sparsity observations of the input shape instance: (1) the input shape can be
approximately represented by a sparse linear combination of shapes in the shape
dictionary; (2) parts of the input shape may contain gross errors but such errors
are sparse. For each refinement iteration, the algorithm minimizes the following
optimization function:

argmin

x,e,�

kT (v
S

,�)� SDx� Sek22 + �1 kxk1 + �2 kek1 (1)

Where v
S

is a subset of points on the input shape, D is the shape dictionary
that represents all training shapes, T (v

S

,�) is a global transformation operator
with parameter �, which aligns the input shape to the same space ofD. x denotes
the weighting coe�cients of the linear combination, and e is a vector that models
the large residual errors. S is a binary diagonal matrix which indicates if a certain
point is in the subset v

S

. Here, in our implementation, each input boundary
shape is represented by a 3D mesh with 4096 surface points. Each surface point
is represented by its three dimensional coordinates. The solved shape is then sent
back to the boundary detectors for another round of shape refinement (Figure
3). The iterative process stops once 1) it reaches a certain number of iterations
or 2) it reaches a certain minimal residual error.

2.3 Adapting Patient-specific Information

Once a new treatment image is collected, it is necessary to update the boundary
classifier and the sparse shape dictionary accordingly to incorporate patient-
specific information. To update the boundary classifier, we collect training sam-
ples from a certain number of the same patient’s previously treated images (n =
3 in our implementation). If a patient doesn’t have as many treatment images
available yet, we then compare the structure similarities betwwen the current
image and the pool of images from all the patients, and select the most similar
ones. We use the method in [14] to handle this image retrieval task. Only the
selected images are used for training the new boundary classifier. The updating
process is o↵-line and doesn’t require human intervention.

While updating the boundary classifier is quite e�cient since not many im-
ages are required for training, updating the sparse shape dictionary is a com-
pletely di↵erent story. To handle large shape variation even from the same pa-



tient, we want a general shape dictionary that can comprehensively capture
shape variations in the shape space. Thus we don’t want to limit the number of
training shapes. However, we want to include the patient’s most recent images to
the dictionary to gain patient-specific knowledge. Training the shape dictionary
from scratch is very time consuming. To improve the computational e�ciency,
dictionary learning techniques have also been employed to train a compact dic-
tionary instead of using all training shapes. We use an online learning method
[12] to adaptively and e�ciently incorporate new shapes. When new training
shapes come, instead of re-constructing the dictionary from scratch, we update
the existing one using a block-coordinates descent approach. Using the dynami-
cally updated dictionary, the sparse shape dictionary can be gracefully scaled up
to model shape prior from a large number of training shapes without sacrificing
run-time e�ciency.

3 Experiments

The population-based boundary classifier and sparse shape dictionary are trained
from 21 3D CT images of 21 patients across 5 hospitals. Each contour is rep-
resented by a 3D mesh with 4096 points. We evaluated the trained boundary
classifier and sparse shape model on 44 3D CT images from 11 patients, and each
patient has at least 3 treatment images. Figure 4 shows auto-contouring results
for 3 patients from top to bottom. Each patient has three snapshots of its axial,
sagittal and coronal planes. We compared the auto-contouring results (in red)
with the experts’ manual contours (in yellow). Despite the two bright seeds inside
the prostate producing significant artifacts on the images, the auto-contouring
results are very close to the ground-truth contours.

To get a quantitative overview of the performance compared with other meth-
ods on the whole testing dataset, Figure 5 shows the Dice values of three di↵erent
methods. We started by using the Demons method [2] with only one atlas. For
each patient’s first 3D CT image, we randomly pick one atlas from the popula-
tion and use the Demons deformable registration method for auto-contouring.
Then for the same patient’s subsequent images, we use their previous segmented
image as the atlas. As shown in Figure 5 (a), the Dice values have large vari-
ation mainly due to the bad performance of the first segmented image. With
randomly picked single atlas, it can hardly fit the target patient’s anatomical
structures well. Thus we increased the number of atlases and applied the STA-
PLE [3] strategy to fuse the deformable registration results from all the atlases.
Similarly, for the patient’s first planning image, we randomly picked 5 atlases
from the population. For the same patient’s subsequent images, we included all
his/her latest segmented images as atlases. As shown in Figure 5 (b), the box-
plot has less outliers and the average performance got improved. But without a
patient-specific boundary detector, the algorithm can hardly precisely drive the
detected contours to the desired borders. Additionally, the computational cost of
using 5 atlases is tremendous. Our method auto-segments the patient’s first plan-
ning image by the population-based classifier and the population-based sparse



Fig. 4. Auto-segmentation results of three patients (from top to bottom) shown as
snapshots on the axial, sagittal and coronal planes (from left to right). The results of
the proposed method are shown in red, and the experts’ manual contours (ground-
truth) are shown in yellow.

shape dictionary, and adaptively learn the patient-specific knowledge during sub-
sequent treatments without sacrificing run-time e�ciency. The performance gets
improved in terms of accuracy and computational cost (Figure 5 (c)).

4 Conclusions

We proposed a learning-based auto-contouring method for online adaptive ra-
diotherapy. Following the nature of the tasks, the learning system is not only
able to generate population-based information, but also capable of adaptively
gaining patient-specific knowledge throughout the whole treatment course. The
training and online updating steps are fully automatic and completely o↵-line,
so that it doesn’t reduce runtime e�ciency. It achieves higher accuracy for the
prostate segmentation when compared with two other state-of-the-art methods,
which makes it very promising for online adaptive treatment planning.
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Fig. 5. Dice values of three methods under comparison: (a) the Demons method with
only one atlas; (b) the Demons method using 5 atlases with the STAPLE label fusion;
(c) Our proposed method.
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Abstract. The manual delineation of Multiple Sclerosis (MS) lesions is
a challenging task pertaining to the requirement of neurological experts
and high intra- and inter-observer variability. It is also time consum-
ing because large number of Magnetic Resonance (MR) image slices are
needed to obtain 3-D information. Over the last years, various mod-
els combined with supervised and unsupervised classification methods
have been proposed for segmentation of MS lesions using MR images.
Recently, signal modeling using sparse representations (SR) has gained
tremendous attention and is an area of active research. SR allows cod-
ing data as sparse linear combinations of the elements of over-complete
dictionary and has led to interesting image recognition results. The dic-
tionary used for sparse coding plays a key role in the classification pro-
cess. In this work, we have proposed to learn class specific dictionaries
and developed a new classification scheme, to automatically detect MS
lesions in 3-D multi-channel MR images.

1 Introduction

Multiple sclerosis is a chronic, autoimmune disease of the central nervous sys-
tem, characterized by structural damages of axons and their myelin sheathes.
During progression of the disease, certain areas of brain develop MS lesions. The
evolution of MS lesions is highly variable and is not fully known. MS is more
common in North America and Europe and is more prevalent in young adult
population, causing non-traumatic disabilities.

Magnetic Resonance Imaging (MRI) holds the capability of detecting abnor-
malities in 95% of the patients with MS and is the best paraclinical method for
imaging MS [1]. These images are analyzed to find the number and spatial pat-
terns of the lesions, appearance of new lesions and the total lesion load, which
are key parameters in the current MS diagnostic setup. However, manual seg-
mentation of MS lesions is a laborious and time consuming process and is prone
to high intra- and inter-expert variability. Therefore, there is a need for fully
automated MS lesion detection methods that can handle large variety of MR
data and which can provide results that correlate well with expert analysis [2].
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Over the past years, various approaches for semi-automatic and automatic
segmentation of MS lesions have been proposed. In these methods, di↵erent im-
age features, classification methods and models have been tried, but they usu-
ally su↵er from high sensitivity to the imaging protocols and so usually require
tedious parameter tuning or specific normalized protocols [3]. More recently,
sparse representation has evolved as a model to represent an important variety
of natural signals using few elements of an overcomplete dictionary. Many pub-
lications have demonstrated that sparse modeling can achieve state-of-the-art
results in image processing applications such as denoising, texture segmentation
and face recognition [4, 5]. In [5], given multiple images of individual subjects
under varying expressions and illuminations, the images themselves were used
as dictionary elements, for classification. Such a method uses dictionary learning
to analyze image as a whole. Mairal et al [6] proposed to learn discriminative
dictionaries better suited for local image descrimination tasks. In medical imag-
ing, local image analysis is of prime importance and it could be interesting
to see the performance of sparse representation and dictionary learning based
classification methods in the context of disease detection. Some researchers have
reported works on segmentation of endocardium and MS lesions using dictionary
learning [7, 8]. Weiss et al. proposed an unsupervised approach for MS lesion seg-
mentation, in which a dictionary learned using healthy brain tissue and lesion
patches is used as basis for classification [7].

Our approach di↵ers from this method in several ways. In [7], authors use
only FLAIR MR images for analysis of clinical data. However, MS lesions appear
in di↵erent intensity patterns in various MR sequences, which include T1 (T1-w
MPRAGE) and T2-weighted, (T2-w) and Proton Density (PD). The comple-
mentary information in these MR images can further assist in classifying MS
lesions. We build our analysis using above mentioned MR sequences. Our ma-
jor contribution is however that we learn class specific dictionaries for healthy
brain tissues and lesions that promote the sparse representation of healthy and
lesion patches. The lesion patches are well adapted to its own class dictionary,
as opposed to the other. Thus, we can use the reconstruction error derived from
sparse decomposition of test patch on to these dictionaries for classification.
In the dataset, the healthy class patches outnumber lesion patches and exhibit
more variability. Thus we use di↵erent dictionary lengths for modelling individ-
ual class patches. In this manner, we take into consideration the data variability
and class imbalance in healthy and lesion classes. Finally, supervised approach
for detection results in omission of tuning of one parameter as mentioned in [7],
making this method fully automatic. In the following sections, we describe our
new approach and provide its evaluation using clinical images.

2 Methodology

As shown in Figure 1, we first preprocess MR images for noise removal and then
extract the image patches of predefined size using brain mask. These patches
are normalized and are divided into the training and test sets for healthy brain
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tissue and lesion classes, with the help of manual segmentation images. Using
training signals, we derive di↵erent classification approaches by either learning
single dictionary or two separate dictionaries for both the classes. Finally, for
a given test patch, the reconstruction error based classification method is de-
veloped, followed by voxel-wise classification and lesion detection. The following
subsections briefly describe these steps.

Fig. 1. Flowchart of MS Lesion Detection using Dictionary Learning

2.1 Patch Extraction and Training Set

We divide the intracranial MR volume into several 3-D patches and flatten
them into one dimensional concatenated vectors representing intensities of T1-w
MPRAGE, T2-w, PD and FLAIR images. Keeping the computational complex-
ity of further analysis in mind, we extract a patch every M voxels in each di-
rection. As described earlier, we develop supervised approach by labelling these
patches as belonging to either healthy or lesion class. If, in a patch, the number
of voxels manually labelled as lesions exceeds a threshold TL = 6mm3, it is in-
cluded in a lesion set, or in healthy set otherwise. For every subject, we obtain
around 1.5 ⇥ 106 patches for healthy and 103 to 105 patches for lesion class,
depending on the lesion load for each patient. These patches are finally normal-
ized to limit their individual norms below or equal to unity, as per constraint
imposed by dictionary learning.

2.2 Sparse Representations and Dictionary Learning

Sparse representation of the data allows the decomposition of signal into linear
combination of few basis elements in an overcomplete dictionary. Consider a
signal x 2 RN and an overcomplete dictionary D 2 RN⇥K . The sparse coding
problem can be stated as mina kak0 s.t. x = Da or kx�Dak22  ", where kak0
is l0 norm of the sparse coe�cient vector a 2 RK and " is error in representation.
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Basis pursuit algorithm solves the convex approximation of the problem above
by replacing l0 norm with l1 norm that also results in sparse solution [9]. Thus,
the sparse coding problem can be given by

min
a
kx�Dak2

2 + � kak1 , (1)

where � controls the trade-o↵ between representation error and sparsity.
The fixed dictionaries like wavelets can be e�cient if a background analytical

model can be inferred. On the other hand, the dictionary learning from under-
lying data has produced exciting results with greater data adaptibility and has
replaced the use of generic models. For a set of signals {xi}i=1,.,m, the dictionary
learning problem is to find D such that each signal can be represented by sparse
linear combination of its atoms. This can be stated as the following optimization
problem

min
D,{ai}i=1,..,m

mX

i=1

kxi �Daik2
2 + � kaik1 . (2)

The optimization is carried out as two-step process involving the sparse coding
step with fixed D and the dictionary update step with fixed a.

2.3 Classification

(a) Using Single Dictionary : In the context of MS lesion classification, the
simplest idea, similar to [7], could be to use a single dictionary learned from
healthy and lesion class patches. As the lesions are outliers with respect to the
healthy brain intensities, the decomposition of lesion patch using this dictionary
would result in higher representation error than that for the healthy tissue patch.
For a given test patch, we calculate the sparse coe�cients and reconstruction
error, and assign it to the lesion class if this error is greater than chosen threshold.
The threshold is selected by observing the histogram of the error map.

(b) Using Class Specific Dictionaries (Same Length) : Here, we learn
class specific dictionaries D1 and D2 for healthy and lesion classes, respectively.
Given a test patch x 2 RN , classification is performed in two steps: In the first
step, sparse coe�cients ai are obtained using Eq (1) for each class i=1 (Healthy)
and 2 (Lesion). The test patch is then assigned to class c such that

c = argmin
i

kx�Diaik2
2 . (3)

(c) Using Class Specific Dictionaries (Di↵erent Lengths) : The dictio-
naries learned using above mentioned approach does not take into account the
data variability between two-classes. The size of the dictionary plays a major role
in the data representation. For healthy class data with more variability and num-
ber of training samples than that for the lesion class, we allow larger dictionary
length for healthy class data and study its e↵ect on MS lesion classification.
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2.4 Voxel-wise Classification and Lesion Detection

As already stated, there is some overlap between patches. However, to obtain
voxel-wise classification, each voxel needs to be assigned to either of the classes.
This is achieved using majority voting, in which, the voxel under consideration is
classified as healthy or lesion, using majority votes of all patches which contain
that voxel.

The voxelwise classification image is further processed to obtain the lesion
based detection image. A lesion is said to be detected if RD

T
RGT

RGT
� TO, where

RD and RGT are respectively the candidate regions in the classification image
and the ground truth, whereas TO is the threshold indicating overlap between
them as a fraction of ground truth lesion.

3 Dataset and Preprocessing

The proposed approach was validated on MRI volumes of 14 MS patients ac-
quired by Verio 3T Siemens scanner. T1-w MPRAGE, T2-w, PD and FLAIR MR
modalities were chosen for the experiment. The volume size for T1-w MPRAGE
and FLAIR is 160 ⇥ 256 ⇥ 256 and voxel size is 1 ⇥ 1 ⇥ 1 mm3, whereas for
T2-w and PD scans, the volume size is 192⇥ 256⇥ 44 and voxel size is 1⇥ 1⇥ 3
mm3. The manual segmentation images obtained from neurological experts are
referred to as ground truth lesion masks.

For MR images of each patient, the imaging artifacts are corrected by de-
noising using non-local means and Intensity Inhomogenity Correction (IIH). The
images so obtained are then registered with respect to T1-w MPRAGE volume
and are processed further to extract the intra-cranial region.

4 Results and Discussions

We implemented our method using MATLAB and Python. The packages AN-
IMA and N3 ITK were used for denoising, registration and IIH correction, re-
spectively [10–12]. We used the neuroimaging software Brain Extraction Tool
(BET) for brain extraction [13]. For dictionary learning and sparse coding, we
used SPArse Modeling Software (SPAMS) package [14].

We performed the experiments on 14 subjects using Leave-One-Subject-Out-
Cross-Validation. Di↵erent parameters have been tested for the methods. It was
found that image patch of size 5 ⇥ 5 ⇥ 5, with a patch every 2 voxels in each
direction, was optimal with respect to the classification e�ciency. The dictio-
nary length of 5000 and sparsity parameter � = 0.95 were optimal selections
for dictionary learning method. For voxel-wise classification method, we then
recorded the number of voxels that belong to True Positives (TP), False Nega-
tives (FN), False Positives (FP) or True Negatives (TN) and the classification
methods were finally validated by calculating sensitivity= TP

TP+FN and Positive
Predictive Value (PPV) = TP

TP+FP .
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In the first method, we studied the classification by learning single dictionary
with the help of both healthy brain tissue and lesion patches. We chose sparse
penalty factor � = 0.85 in the sparse coding step and performed the classification
for various threshold values on the histogram of error map, as explained previ-
ously. We then selected the threshold for which the best voxelwise classification
results were obtained in terms of both sensitivity and PPV. It was observed that
the method su↵ered with a very large number of false positive detections.

Next, we learned class specific dictionaries for healthy and lesion classes,
each. We used dictionary lengths of 5000 for signal representation of each class.
The mean sensitivity and PPV obtained using this approach were 91.5% and
7.5%. This method performs better than the previous method but still contains
many false positives. The primary reason behind this can be the di↵erence in the
data variability of each class signals. The healthy class patches have more vari-
ability in terms of representation of white matter (WM), gray matter (GM) and
cerebrospinal fluid (CSF), as compared to the variations in the representation of
lesions. Hence, we adopted di↵erent dictionary lengths for representation of these
classes. We used dictionary lengths of 5000 and 1000 respectively, for healthy
and lesion classes. Table 1 summarizes the results of the voxelwise classification
for the three methods described above.

Table 1. Voxel-wise classification results using: (a) Single Dictionary (SD), with 5000
atoms learned using healthy and lesion class data, (b) Class Specific Dictionaries with
Same Lengths (CSD SL): 5000 atoms each and (c) Class Specific Dictionaries with
Di↵erent Lengths (CSD DL): 5000 atoms for healthy class and 1000 atoms for lesion
class. Sensitivity and Positive Predictive Value (PPV) (%) are given for each method.

(a) (b) (c)
Patient SD CSD SL CSD DL

Sens. PPV Sens. PPV Sens. PPV
1 42 1 97 3 53 31
2 74 1 98 2 66 41
3 73 1 91 2 63 27
4 91 2 98 17 57 68
5 61 1 95 10 54 65
6 91 7 89 29 38 55
7 78 1 85 3 20 32
8 72 1 98 3 69 21
9 80 1 36 2 4 9
10 66 1 97 9 61 52
11 89 2 98 12 66 41
12 75 1 99 8 52 36
13 78 1 100 3 77 31
14 59 1 100 2 78 17

Average 73.5 1.57 91.5 7.5 54.14 37.57
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It can be seen that using class specific dictionaries with the same dictionary
length improves both sensitivity and PPV, as compared to the first method. But
PPV in the second method is still low, indicating that there are still large number
of false positives, which can explain higher sensitivity. Using di↵erent dictionary
lenghts, as implemented in third method, drastically reduces the number of false
positives, which can be seen by the significant increment in PPV, while keeping
the sensitivity in the acceptable limit.

The mean PPV and sensitivity for lesion detection with class specific dictio-
naries of di↵erent lengths are shown in Table 2 for various overlap thresholds
TO. To be consistent with the threshold TL incorporated in learning stage (Re-
fer Section 2.1), we ignore very small lesions with volumes less than TL. It can
be seen that we detect 61% of the lesions with the overlap threshold of 1% .
Moreover, in 49% of the lesions detected, at least 40% of the voxels are correctly
classified by the method.

Table 2. Performance analysis for lesion detection using Class Specific Dictionaries
with Di↵erent Lengths (CSD DL) for each class, with 5000 atoms for healthy class
dictionary and 1000 atoms for lesion class dictionary.

TO = 0.01 TO = 0.1 TO = 0.2 TO = 0.3 TO = 0.4
PPV (%) 61.67 58.41 56.53 54.31 49.40

Sensitivity (%) 60.97 57.58 56.67 54.56 49.94

In Figure 2, we show the results for patient 8, for all the methods discussed
above. The detection image is superimposed on FLAIR MR image. It can be
observed that methods (a) and (b) have large number of false positives. We
get the best classification results using class specific dictionaries with di↵erent
dictionary lengths. But, in terms of voxelwise classification, there are still few
false positives and true negatives around the actual lesion. This does not pose
a major problem for lesion detection as long as significant portion of the actual
lesion is being classified correctly. There are, however, some false positive lesion
detections.

We are aware that we do not have a very large population for training. Hence
we investigated the incorporation of longitudinal database into our analysis by
considering MR sequences at 3 time points (M0, M3 and M6) for all the patients.
As the lesions evolve over the course of time, it is fair to consider that each new
dataset will enrich our learning model. Thus, we modified the training data, for
each patient, in two ways: (1) Data at time-points M0 and M3, with 26 datasets
and (2) Data at time-points M0, M3 and M6, with 39 datasets. However, the
lesion detection experiments for the same test subjects, as in previous exper-
iments, using class specific dictionaries with the lengths of 5000 and 1000 for
healthy and lesion class respectively, did not show any significant improvement
in the sensitivity and PPV. This suggests that the population for training the
dictionaries earlier was su�cient and the dictionaries should be adapted to learn
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(a) (b) (c)

Fig. 2. Classification results for Patient 8. For illustration purpose, one slice has been
arbitrarily selected. True Positives are in red, False Positives are in cyan, False Nega-
tives are in green. Methods (a), (b) and (c) are the same as in Table 1.

more specific structures viz. WM, GM and CSF versus lesions to help improve
the detection.

5 Conclusion

In this paper, we have proposed a new supervised approach to automatically
detect multiple sclerosis lesions using dictionary learning. We investigated the
performance of three methods which either use one dictionary, treating lesions as
outliers, or use class specific dictionaries for healthy and lesion classes, wherein
the underlying data for each class is represented by the dictionary and sparse
coe�cients. We further studied the e↵ect of using di↵erent dictionary lengths,
allowing larger dictionaries to represent the complex data and concluded that
such method minimizes the false positive detections in the classification.

Although the method using class specific dictionaries follows supervised ap-
proach, contrary to the single dictionary based classification method, which does
not necessarily require training data, it is worth mentioning that the former
method eliminates one parameter: threshold on error map. This crucial para-
mater is not easy to tune and could lead to worse classification results for small
errors in the brain extraction procedure.

To further improve the results, it would be interesting not to learn only one
dictionary for healthy brain tissues, but derive dictionaries more specific to WM,
GM and CSF, in addition to the lesions. One could also study the role of sparse
coe�cients in addition to the reconstruction error, in the classification step.
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Abstract. In theory, multimodal EEG-fMRI recordings represent an
excellent tool for studying bioelectric-hemodynamic coupling in the hu-
man brain without incurring added complexity due to nonstationarity.
However, ballistocardiogram (BCG) artifacts as opposed to magnetic
gradient noise have made analysis of EEG data collected in the MRI
environment very challenging. Conventionally, BCG artifacts have been
removed only partially after meticulous user-guided identification of in-
dependent components associated with noise. In this paper, we present
a novel method for automatically removing BCG artifact from event re-
lated EEG data by leveraging sparsity in the time domain. Our method,
low rank + sparse decomposition (LR+SD) extends robust PCA and re-
quires tuning of only a single regularization parameter. We apply this
method first to simulated data,and then to real simultaneous EEG-
fMRI data, collected while subjects viewed photic stimuli. We found
that LR+SD improved the signal-to-noise ratio by 34 and 36 percent, as
compared to either manual or automatic IC methods respectively. This
method appears quantitatively superior to IC methods, and may im-
prove the feasibility of analyzing event related EEG-fMRI data collected
concurrently.

Keywords: Concurrent EEG-fMRI, balistocardiogram, artifact removal,
robust, PCA, low rank, sparsity, sparse decomposition

1 Introduction

Independently, electroencephalogram (EEG) and functional MRI (fMRI) o↵er
either rich temporal (EEG) or spatial (fMRI) information related to neuronal
dynamics in the brain. Ideally, these imaging techniques could be combined in
a complementary fashion to harness their respective strengths [4], [16], and po-
tentially improve our ability to localize epileptiform generators [15]. However,
analysis of EEG data collected in the MRI environment has proven quite chal-
lenging, given a number of artifacts introduced during concurrent recordings.

EEG recordings putatively reflect the superposition of electric dipoles as-
sociated with synchronous activity from neural populations measured at the
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scalp [3]. When collected inside the MR scanning environment, these signals
are corrupted by noise due to the switching of magnetic fields, which creates a
prominent gradient artifact. This gradient signal initially appeared problematic,
however, a number of template-subtraction methods have been developed that
can e↵ectively remove this large signal [8].

More troublesome to this analysis is the quasi-periodic signal known as the
ballistocardiogram (BCG) artifact, which cannot be easily removed with tem-
plate based methods. The BCG is generated as EEG electrodes move due to
pulsatile motion during the cardiac cycle, and presents broadly in the spectral
frequencies often analyzed in EEG (0.5-25 Hz) [5]. The presence of these arti-
facts can dramatically change the spectral properties of the signal, and obscure
ability to perform trial-by-trial analyses.

Thus far, a variety of techniques have been tested to remove BCG artifact
from these data including template based average artifact subtraction based on
cardiac r-wave timing [1], filtering [12], independent component analysis (ICA)
[10], optimal basis sets (OBS) [14], clustering [17], and combined methods [5],
many of which can be applied using manual or automated algorithms. Although
each of these methods have acheived some degree of e�cacy, most of these ei-
ther require collection of additional data (e.g. ECG data) for template charac-
terization purposes, require tedious manual artifact component identification, or
require cardiac signal identification within the EEG itself, which is often only
intermittently identifiable throughout a recording session.

Here, we introduce a new algorithm for removing artifact from EEG sig-
nals that uses low rank + sparse decomposition (LR+SD). To do so, we pro-
pose a mathematical model based on a reasonable experimental assumption
that artifact components will be mathematically expressed di↵erently than the
data themselves. Specifically, we focus on event related or stimulus-locked EEG
events, and assume that these will be represented sparsely in the time domain.
Importantly, this method obviates the need for any reference or template artifact
signal. As such, the combined e↵ects of many types of artifacts can be removed
in a single decomposition without the need for manual identification of artifact
components in the data. We then assess the utility of this new algorithm on
simulalted and real data.

2 Methods

2.1 Low Rank + Sparse Decomposition Method

We denote {f̃i(k)}Ni=1 the set of recorded EEG signals. The index i corresponds
to the channel index, assuming we have a total of N electrodes distributed over
the scalp. Moreover, we assume that each signal is recorded over K samples,
i.e. k 2 {1, . . . ,K}. We consider J (unknown) artifacts, and will denote them
{fA

j (k)}Jj=1 where the index j identifies di↵erent artifacts. The goal of the artifact

removal procedure is then to retrieve cleaned EEG signals, {fi(k)}Ni=1.
In the proposed method we assume the following model: each recorded EEG
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channel is a linear combination of its cleaned version and the di↵erent artifacts.
This model is equivalent to write:

f̃i(k) = fi(k) +
JX

j=1

aijf
A
j (k), (1)

where the mixing coe�cients aij are unknown. In the following, we use a matrix
formalism to model the global processes. To do so, we cast each EEG and artifact
channels as columns of K ⇥N matrices:
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where f̃A
i (k) =

PJ
j=1 aijf

A
j (k). The matrix F̃ contains all recorded EEG chan-

nels, F the wanted cleaned EEG signals and F̃A contains the mixing of all
artifacts. The latter can be written as F̃A =

PJ
j=1 F

A
j where

FA
j =
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j a2j f̃A
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A . (3)

The key to our method is to notice that each matrix FA
j has its columns pro-

portional to the same vector f̃A
j implying that rank(FA

j ) = 1 and consequently

rank(F̃A)  J . Otherwise, the matrix F should contain events resulting from
true EEG data. In our case, we focus on event related or stimulus-locked EEG
events, which occur at specific times and a↵ect a limited number of electrodes.
Therefore, it is reasonable to assume that F is a sparse matrix. Thus the artifact
removal problem is equivalent to performing a low-rank + sparse decomposition
of F̃ . The resulting sparse component therefore corresponds to the cleaned EEG
signals. Such decomposition can be done by solving the following minimization
problem:

(F, FA) = argmin kFAk⇤ + �kFk1 (4)

such that F̃ = F + FA,

where k.k⇤ denotes the nuclear norm of a matrix (i.e. the sum of its singular
values), k.k1 denotes the sum of the absolute value of the matrix entries and � is
a positive parameter allowing us to control the balance of the sparsity of the F
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matrix and rank of FA. This framework is very similar to Robust PCA, which
has been actively studied in the mathematics community in recent years. Here,
we extend the Lin et al. (2009) algorithm for artifact removal [11], and select
the regularization parameter that maximizes signal to noise ration by running
a sweep across all possible ranks. Upon publication, all code developed for this
project will be available on the NITRC repository.

2.2 Simulated Dataset

In general, there is no ground truth EEG signal when data are empirical, mak-
ing it di�cult to assess the utility of artifact-removal algorithms. We therefore
created a simulated dataset using the free BESA (Brain Electrical Source Anal-
ysis) to generate simulated EEG signals generated by three distributed dipole
sources corrupted by known artifacts using a spherical head forward model. In
order to add realistic noise to the data, we used ECG, EMG, and right and
left EOG reference artifact recordings extracted from the free sample of the
SHHS Polysomnography Database. These reference artifacts were normalized
and added to the pure simulated EEGs using randomized mixing coe�cients
accordingly to a uniform distribution.

2.3 Empirical Data: Concurrent EEG-fMRI

Twenty healthy individuals (ages 23-30, 12 male) provided written informed
consent to participate in this study, approved by the UCLA IRB. Concurrent
recordings took place while subjects passively viewed 140 Gabor flashes, pre-
sented via an MR projector screen with a varied inter stimulus interval of 13.85
+/ -2.8 sec, a task known to generate reproducible occipital ERSPs in the al-
pha (8-12 Hz) spectral band [9]. EEG were recorded using a 256-channel GES
300 Geodesic Sensor Net (Electrical Geodesics, Inc.) at 500 Hz. MRI clock sig-
nals were synced with EEG data collection for subsequent MR artifact removal.
Functional scans were acquired using 3-T Siemens Trio MRI Scanner using echo
planar imaging gradient-echo sequence with echo time (TE) of 25msec, repeti-
tion time of 1s, 6mm slices, 2mm gap, flip angle 90 degrees, with 3mm in-plane
resolution, ascending acquisition. EEG data then underwent MR gradient arti-
fact removal by subtracting an exponentially weighted moving average template,
according to methods described in [8].

We compare LR+SD to the established InfoMax ICA cleaning method, as
implemented in Brain Analyzer v.2.0.2 software (Brain Products) using manual
identification of cardiac signal within the EEG followed by the automated so-
lutions procedure for identifying IC components correlated with cardiac signal.
For comparison purposes, we also collected single modality EEG data outside
the MR environment using the same stimuli and parameters in a copper sheilded
room (referred to as ”Outside Scanner” in figures).



5

3 Results

3.1 Simulated Data Results. In the case of simulated data, we know the
“true” solution. We adopt the time-frequency representation (TFR) to visualize
results computed via a continuous wavelet transform (CWT) using the Morlet
wavelet, to assess the e�ciency of the proposed method. Figure 1 shows the
TFRs for simulated data arising from three distributed dipole sources. The TFRs
corresponding to the pure and artifact signals are depicted in the two upper right
plots while the TFR obtained from the raw EEGs (pure EEGs mixed with pure
artifacts) is given on the upper left plot. Notice that the time-frequency energy
corresponding to pure EEGs is nearly undetectable due to the artifact energy.
The signatures of each event are not visible in the raw EEGs’ TFRs yet they are
clearly visible in the sparse component.In both the single and multiple source
experiments the regularization parameter � had value 5.10�3 which resulted in
ranks of 4 and 5 for the low-rank artifact components, respectively. The proposed
method shows excellent results in separating the artifact parts from the EEG
signals of interest.
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Fig. 1. Simulated Data Results. Three sources measured with an electrode located
close to the primary motor cortex (source 3). (Top Panel) CWT of original simulated
data consisting of three dipole sources corrupted by ECG, EMG and right and left
EOG template artifacts (left), the true EEG data alone (middle), and artifact alone
(right). (Bottom Panel) LR+SD result TFRs separating the cleaned EEG (left) from
artifact (right). Values are normalized to maximum for each display.
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3.2 EEG-fMRI Empirical Data Results. Group level ERSP results for
LR+SD artifact removal of our experimental data are summarized and compared
to ICA artifact removal as well as out of scanner data in Figure 2(a-d). Signal-
to-noise ratio (SNR) was computed by calculating the ratio of the maximum
absolute signal diminution in alpha power from 0 to 500 msec following stim-
ulus presentation to the standard deviation of alpha power from the following
1000msec post stimulus. SNR was 8.5, 11.4, and 15.2 for ICA, LR+SD, and out
of scanner data respectively. Figure 2(d) shows group level alpha spectral EEG
data projected topographically for pre-stimulus (-250 msec), ERSP (50msec),
and post stimulus (500 msec), with timings with respect to the stimulus occur-
ring at time equal to zero. Figure 3 shows single-patient alpha power averaged
over all stimuli for a window of 2sec pre stimulus to 8sec post. The raw data
is shown in comparison with the sparse component from LR+SD and ICA us-
ing an average of the time-frequency intensity over alpha band frequencies. The
strength at the specific frequency of 10Hz with bounds of one standard deviation
is also shown for each dataset.
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Fig. 2. Group Level Results comparing independent component analysis (ICA) and
LR+SD based cleaning to EEG data collected outside of the MR scanner environment.
(TOP PANEL) Normalized Alpha Power time courses derived from the ocular EEG
channel averaged across all subjects plotted with mean +/- SEM for ICA, LR+SD and
Outside Scanner Results. Signal-to-Noise rations are shown in the lower left corner for
each result with the stimulus occurring at time equal to zero. (LOWER PANEL) Group
level alpha power results projected topographically for 500msec prior to stimulus onset
(PRE), 50 msec following stimulus onset(ERSD), and 500msec following stimulus onset
(POST).
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Fig. 3. Single-subject alpha band TFR averaged over stimuli. Columns denote (left)
the raw MRI signal, (center) the ICA-cleaned signal (right) the sparse component
from LR+SD. For each dataset is shown (top row) TFR over a frequency range about
the alpha band and (bottom row) the signal strength at 10Hz with single standard
deviation bounds.

4 Discussion

In this paper, we introduce a novel method for removing artifacts from EEG
signals, which decomposes data into the sum of two matrices: a sparse matrix
representing the cleaned EEG data, and a low-rank matrix, which corresponds to
the artifact portion of the data. We applied this algorithm to remove artifact from
both simulated and empirical data. Overall, LR+SD was quantitatively more
e↵ective than ICA from an SNR perspective, and qualitatively more robust at
recovering the diminution in alpha power topographically. Overall, the LR+SD
algorithm is quite similar to the robust PCA algorithm which has been applied
for background subtraction puposes [2], operating on the assumption that the
EEG data events themselves are sparsely represented across channels in the
time domain. Artifacts are conversely assumed to be broadly distributed at the
channel level across the scalp. Here, we used only the Infomax ICA algorithm
for comparison, since previous studies have shown that this algorithm is most
e↵ective at BCG removal. However, it should be noted that results using ICA
for artifact removal of concurrent EEG-fMRI have varied [7].

After optimization, we found that a rank of 25 was required for the low rank
matrix to describe the BCG artifact. Lower ranks were ine↵ective at isolating the
BCG noise, due to the complexity of the BCG signal itself. In the clinical setting,
the ECG cardiac signal is often low-pass filtered and gross changes of its signature
(e.g. ST segment elevation) are examined. However, lower amplitude changes in
higher frequencies of the ECG exist and have been shown to correlate with
cardiac ischemia even up to 250Hz [6]. Given this broad spectral signature, it is
unsurprising that more than a few sparse components were required to capture
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the artifact signals in real data. In summary, LR+SD provides an automatic
method for parsing data and artifact into separate groups, with the need to tune
only one regularization parameter. Further work may use spatial information
from electrode topographies as further constraints.

Acknowledgements The authors want to thank the Keck Foundation for
their support.
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Abstract. This paper presents a novel method that combines kernel-
ized dictionary learning and group sparsity to e�ciently cluster white
matter fiber tracts obtained from di↵usion Magnetic Resonance Imag-
ing (dMRI). Instead of having an explicit feature representation for the
fibers, this method uses a non-linear kernel and specialized distance mea-
sures that can better learn complex bundles. Through the use of a global
sparsity prior, the method also provides a soft assignment of fibers to
bundles, making it more robust to overlapping fiber bundles and out-
liers. Furthermore, by using a group sparsity prior, it can automatically
discard small and uninteresting bundles. We evaluate our method both
qualitatively and quantitatively using expert labeled data, and compare
it with state of the art approaches for this task.

1 Introduction

Due to its ability to infer the orientation of white matter fibers in-vivo and non-
invasively, di↵usion tensor imaging (DTI) has become an essential tool to study
the microstructure of white matter in the brain. While extracting the individual
fiber tracts from DTI data, a process known as tractography, is important to
visualize the connection pathways in the brain, this process typically produces
a large number of tracts which makes their analysis complex. To facilitate this
analysis, it is often necessary to group the individual tracts into larger clusters,
called bundles.

Methods proposed for the fiber clustering problem can be categorized in
terms of the features and distance measures used to group the fibers into bundles.
Features proposed to represent fibers include the distribution parameters (mean
and covariance) of points along the fiber [2] and B-splines [11]. Approaches using
such explicit features typically su↵er from two problems: they are sensitive to the
length and endpoint positions of the fibers and/or are unable to capture their
full shape. Instead of using explicit features, fibers can also be compared using
specialized distance measures. Popular distance measures for this task include
the Hausdor↵ distance, the Minimum Direct Flip (MDF) distance and the Mean
Closest Points (MCP) distance [3, 12]. Fiber clustering approaches can also be
divided with respect to the clustering methods used, which include manifold
embedding based approaches like spectral clustering and normalized cuts [2],
agglomerative approaches like hierarchical clustering [3], k-means, and k-nearest



neighbors [12]. Several studies have also focused on incorporating anatomical
features into the clustering [14] and on clustering large multi-subject datasets
[9].

Recently, several researchers have studied the connection between clustering
and factorization problems like dictionary learning [15] and non-negative ma-
trix factorization [10]. For instance, dictionary learning has been shown to be
a generalization of the traditional clustering problem, in which objects can be
assigned to more than one cluster. In fiber clustering, such soft assignments are
desirable since fiber bundles often overlap each other. Using a soft clustering, in-
stead of hard one, can also make the method more robust to outliers (e.g., false
fibers generated during tractography) that do not belong to any real cluster.
Moreover, researchers have also recognized the advantages of applying kernels
to existing clustering methods, like the k-means algorithm [4], as well as to dic-
tionary learning approaches [13]. Such “kernelized” methods better capture the
non-linear relations in the data.

The major contribution of this paper is a novel fiber clustering approach
based on kernelized dictionary learning. By modeling the fiber clustering task as
a dictionary learning problem, this approach provides a soft assignment of fibers
to bundles, which makes it more robust to overlapping bundles and outliers.
Furthermore, through the use of a non-linear kernel, it avoids the need to specify
explicit features for the fibers, and can facilitate the separation of clusters in a
manifold space. Also, by having both a global and group sparsity prior, our
approach can control the minimum membership of fibers to bundles as well as
the size of these bundles. This makes it more robust to the selection of the
number of clusters in the output, a parameter which can be hard to tune, and
allows it to automatically discard insignificant clusters. To our knowledge, this
work is the first to combine group sparsity and kernelized dictionary learning.
Our results on the fiber clustering problem show the potential of this approach
for other medical imaging applications.

2 The proposed approach

2.1 The clustering problem

Before presenting our proposed approach, we first define the clustering problem
and underline its link to dictionary learning. Let X 2 Rd⇥n be the data matrix
of n fibers, where each column contains the feature vector xi 2 Rd of a fiber
tract i. The traditional (hard) clustering problem can be defined as assigning
each fiber to a bundle from a set of k bundles, such that fibers are as close
as possible to their assigned bundle’s prototype (i.e., cluster center). Let  k⇥n

be the set of all k⇥n cluster assignment matrices (i.e., matrices in which each
row has a single non-zero value equal to one), this problem can be expressed as
finding the matrix D of k bundle prototypes and the fiber-to-bundle assignment
matrix W that minimize the following cost function:

min
D2Rd⇥k

W2 k⇥n

1

2
||X �DW ||2F . (1)



This formulation of the clustering problem can be seen as a special case of
dictionary learning, where D is the dictionary and W is constrained to be a
cluster assignment matrix, instead of constraining its sparsity.

While solving this clustering problem is NP-hard, optimizing W or D in-
dividually is easy. Thus, for a given dictionary D, the optimal W assigns each
fiber i to the prototype k closest to its feature vector:

wki =

⇢

1 : if k = argmink0 ||xi � dk0 ||2,
0 : otherwise.

(2)

Likewise, for a fixed W , the optimal dictionary is found by solving a simple
linear regression problem:

D = XW

>�
WW

>��1

. (3)

This suggest the following heuristic: starting with a dictionary containing a ran-
dom subset of the columns of X, optimize D and W alternatively, until conver-
gence.

This clustering problem and simple heuristic correspond to the well-known
k-means algorithm. With respect to dictionary learning, the dictionary update
step described above is known as the Method of Optimal Directions (MOD) [1].
Although k-SVD [1] could also be used for this task, this technique focuses on
learning large dictionaries e�ciently and sacrifices the optimality of the dictio-
nary update step to do so. In our case, the dictionary size corresponds to the
number k of bundles (i.e., clusters), which is quite small in comparison to the
number of tracts. Thus, updating the dictionary using MOD is quite fast.

2.2 Group sparse kernel dictionary learning

The k-means approach described in the previous section su↵ers from four im-
portant problems. First, it requires to encode fibers as a set of features, which
is problematic due to the variation in their length and endpoints. Second, it
assumes linear relations between the fibers and bundle prototypes, while these
relations could be better defined in a non-linear subspace (i.e., the manifold).
Third, it performs a hard clustering of the fibers, which can lead to poor results
in the presence of overlapping bundles and outliers. Finally, it may find insignif-
icant bundles (e.g., bundles containing only a few fibers) when the parameter
controlling the number of clusters is not properly set.

To overcome these problem, we present a new clustering method based on
group sparse kernelized dictionary learning. Let � : Rd ! Rq be a fiber mapping
function such that k(xi,xj) = �(xi)>�(xj) corresponds to a similarity kernel.
Moreover, denote by � the matrix of mapped fiber tracts, i.e., � = �(X), and
let K = �

>
� be the kernel matrix. We reformulate the clustering problem as

finding the dictionary D and non-negative weight matrix W minimizing the
following problem:

min
D2Rq⇥k

W2Rk⇥n
+

f(D,W ) =
1

2
||��DW ||2F + �

1

||W ||
1

+ �
2

||W ||
2,1 +

�
3

2
||D||2F . (4)



In this formulation, ||W ||
1

=
PK

i=1

PN

j=1

|wij | is an L
1

norm prior which enforces

global sparsity of W , and ||W ||
2,1 =

PK

i=1

||wi·||2 is a mixed L
2,1 norm prior

imposing the vector of row norms to be sparse. Concretely, the L
1

norm prior
limits the “membership” of fibers to a small number of bundles, while the L

2,1

prior penalizes the clusters containing only a few fibers. The Forbenius norm
prior on D is used to avoid numerical problems when W is singular (i.e., when
one or more clusters are empty). Parameters �

1

,�
2

,�
3

� 0 control the trade-o↵
between these three properties and the reconstruction error (i.e., the first term
of the cost function).

Using an optimization approach similar to k-means, we alternate between
updating the dictionary D and the weight matrix W . Since the dictionary pro-
totypes are defined in the kernel space, D cannot be computed explicitly. To
overcome this problem, we follow the strategy proposed in [13] and define the
dictionary as D = �A, where A 2 Rn⇥k. Using this formulation, A can be
computed as follows:

A = W

>�
WW

> + �
3

I

��1

. (5)

Matrix A is initialized as a random selection matrix (i.e., random subset of
columns in the identity matrix), which is equivalent to using a random subset
of the transformed fibers (i.e., subset of columns in �) as the initial dictionary.

To updateW , we use an Alternating Direction Method of Multipliers (ADMM)
method. First, we separate the problem in two sub-problems, one considering
only the reconstruction error and the second considering only the (group) spar-
sity terms and non-negativity constraints, by introducing ancillary matrix Z.
The problem can then be reformulated as follows:

min
W2Rk⇥n

Z2Rk⇥n
+

1

2
||���AW ||2F + �

1

||Z||
1

+ �
2

||Z||
2,1, s.t. W = Z. (6)

We then convert this constrained problem using an Augmented Lagrangian for-
mulation with multipliers U :

min
W ,U2Rk⇥n

Z2Rk⇥n
+

1

2
||���AW ||2F + �

1

||Z||
1

+ �
2

||Z||
2,1 +

µ

2
||W �Z +U ||2F . (7)

In an inner loop, we update W , Z and U alternatively, until convergence (i.e.,
||W � Z||2F is below some threshold). To update W , we derive the objective
function with respect to this matrix and set the result to 0, yielding:

W =
�

A

>
KA+ µI

��1

�

A

>
K + µ(Z �U)

�

. (8)

Optimizing Z corresponds to solving a group sparse proximal problem (see [7]).
This can be done in two steps. First, we do a L

1

-norm shrinkage by applying
the non-negative soft-thresholding operator to each element of W +U :

ẑij = S+

�1
µ

�

wij + uij

�

= max
n

wij + uij �
�
1

µ
, 0

o

, i  K, j  N. (9)



Then, Z is obtained by applying a group shrinkage on each row of Ẑ:

zi· = max
n

||ẑi·||2 �
�
2

µ
, 0

o

·
ẑi·

||ẑi·||2
, i  K. (10)

Finally, as in standard ADMM methods, the Lagrangian multipliers are updated
as follows:

U

0 = U +
�

W �Z

�

. (11)

2.3 Algorithm summary and complexity

The clustering process of our proposed method is summarized in Algorithm 1.
In this algorithm, the user provides a matrix Q of pairwise fiber distances (see
Section 3 for more details), the maximum number of clusters k, as well as the
trade-o↵ parameters �

1

,�
2

,�
3

, and obtains as output the dictionary matrix A

and the cluster assignment weights W . At each iteration, W , Z and U are
updated by running at most T

in

ADMM loops, and are then used to update
A. This process is repeated until T

out

iterations have been completed or the
cost function f(D,W ) converged. The soft assignment of W can be converted
to a hard clustering by assigning each fiber i to the bundle k for which wik is
maximum.

The complexity of this algorithm is mainly determined by the initial ker-
nel computation, which takes O(n2) operations, and updating the assignment
weights in each ADMM loop, which has a total complexity in O(T

out

·T
in

·k2 ·n).
Since T

out

, T
in

and k are typically much smaller than n, the main bottleneck
of the method lies in computing the pairwise distances Q used as input. For
datasets having a large number of fibers (e.g., more than n = 100, 000 fibers),
this matrix could be computed using an approximation strategy such as the the
Nyström method [6].

3 Experiments

We evaluated the performance of our proposed method on a dataset of expert
labeled bundles, provided by the Sherbrooke Connectivity Imaging Laboratory
(SCIL). The source dMRI data was acquired from a 25 year old healthy right-
handed volunteer and is described in [5]. We used 10 of the largest bundles,
consisting of 4449 fibers identified from the cingulum, corticospinal tract, supe-
rior cerebellar penduncle and other prominent regions. Figure 2(b) shows the
coronal and sagittal plane view of the ground truth set.

Although our method has several parameters, only two of them require data
specific tuning: �

1

and �
2

. The RBF kernel parameter � depends on the distance
measure used, not the dataset. For these experiments, we used the Mean Closest
Points (MCP) distance [3] to compute the pairwise fiber distances Q, and set
� to 0.01. Also, �

3

and µ correspond to regularization parameters and should
be set to a small positive value. In our experiments, we have used �

3

= 10�6

and µ = 0.01 for these parameters. According to Eq. 9, �
1

/µ corresponds to a
minimum threshold for the assignment weights. As shown in Figure 1(a), this



Algorithm 1: ADMM method for group sparse kernelized clustering

Input: Pairwise fiber distance matrix Q 2 Rn⇥n;
Input: The maximum number of fiber bundles k;
Input: The RBF kernel parameter �;
Input: The cost trade-o↵ parameters �

1

,�
2

,�
3

and Lagrangian parameter µ;
Input: The maximum number of inner and outer loop iterations T

in

, T
out

;
Output: The dictionary A 2 Rn⇥k and assignment weights W 2 Rn⇥k

+

;

Initialize the kernel matrix: kij = exp(�� ·q2ij);
Initialize A as a random selection matrix and t

out

to 0;

while f(D,W ) not converged and t
out

 T
out

do

Initialize U and Z to all zeros and t
in

to zero;

while ||W �Z||2F not converged and t
in

 T
in

do

Update W , Z and U :
W  

�

A>KA+ µI
��1

�

A>K + µ(Z �U)
�

;

ẑij  max
n

wij + uij �
�
1

µ
, 0

o

, i  K, j  N ;

zi·  max
n

||ẑi·||2 � �
2

µ
, 0

o

·
ẑi·

||ẑi·||2
, i  K;

U  U +
�

W �Z
�

;

t
in

 t
in

+ 1;

Update dictionary: A  W>�WW> + �
3

I
��1

;
t
out

 t
out

+ 1;

return {A,W } ;

value can be used to control the mean number of non-zero weights per fiber (i.e.,
how soft or hard is the clustering). Likewise, �

2

/µ is a minimum threshold on
the total membership to a bundle and, as shown in Figure 1(b), controls the size
of bundles in the output. Finally, following the convergence rate shown in Figure
1(c), we have used T

out

= 20 for the maximum number of iterations. The same
value was used for the number of inner loop iterations (i.e., T

in

= 20).
Figure 2(a) shows the mean Adjusted Rand Index (ARI) [12] obtained by

our method, denoted by MCP+L1+L21, over 5 runs with di↵erent random ini-
tializations. We compared this method with two well-known fiber clustering ap-
proaches: QuickBundles (QB) [8] and Normalized cuts (Ncuts) [2]. QuickBun-
dles recursively groups fibers between which the Minimum Direct Flip (MDF)
distance is below a specified threshold. Ncuts performs a spectral embedding
of the fibers encoded as the mean and covariance parameters of the points dis-
tribution, and then clusters the embedded fibers using a recursive partitioning
strategy or k-means. Based on earlier results, we used 25 eigenvectors for the
embedding and k-means for clustering. We also tested our method without the
group sparsity prior (i.e., using �

2

= 0) and called MCP+L1 this simplified
model.
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Fig. 1: (a) Mean number of non-zero assignment weights per fiber, for �
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/µ = 80
and increasing �

1

/µ. (b) Mean number of fibers per bundle, for �
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/µ = 0.1 and
increasing �
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/µ. (c) Cost function value at each iteration of a sample run.
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Fig. 2: (a) Mean ARI of QB, Ncuts, MCP+L1 (�
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/µ = 0.1, �
2

/µ = 0) and
MCP+L1+L21 (�
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/µ = 0.1, �
2

/µ = 80), for increasing k. (b)-(c) Ground truth
bundles and clustering output of MCP+L1+L21 for k = 20. (d) Distribution of
bundle sizes corresponding to this output.

From these results, we see that Ncuts performs worse than all other methods.
This is possibly due to the fact that the features used to encode the fibers
do not fully capture their shape. Moreover, we observe that the peak ARI of
QuickBundles is similar to that of MCP+L1, but the latter peaks closer to the
true number of bundles (i.e., 10). Finally, we see that the MCP+L1+L21 method,
which also considers group sparsity, obtains the highest ARI and is less sensitive
to the value of k given as input. The bundles obtained by this method for k = 20
are presented in Figure 2(c). As shown in Figure 2(d), this clustering contains
the same number of clusters as the ground truth, even though the maximum
number of clusters was set to k = 20.

4 Conclusion

We have presented a new fiber clustering approach based on dictionary learning.
This approach uses a non-linear kernel which avoids having to define features
for the fibers and can represent complex bundles. Furthermore, by using an L

1

norm prior, instead of hard clustering constraints, it is more robust to overlap-



ping bundles and outliers. Finally, since it also includes a group sparsity prior,
our approach can find more interesting bundles than other methods for this task.
Experiments conducted on expert labeled data show our methods to outperform
state of the art fiber clustering approaches such as QuickBundles and Normal-
ized Cuts. In future work, we will extend the proposed model to incorporate
anatomical information in the form of atlases.
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Abstract. This paper presents a framework for 3D left ventricle reconstruction
using sparse magnetic resonance (MR) images with different orientations. Due
to the inadequate inter-slice resolution, both short- and long-axis cardiac MR
images are commonly acquired to reveal the left ventricle shape and motion. The
contours in these images show different profiles of left ventricle and contain its
essential shape information. In this paper, we propose a new deformable model to
segment left ventricle on 2D slices with different orientations, and reconstruct its
3D model that matches all the contours in the images. An alternating optimization
algorithm is proposed to efficiently solve the problem. The framework is applied
on mouse cardiac MR data and shows promising results.

1 INTRODUCTION

In recent years, magnetic resonance imaging (MRI) is frequently used for the analysis
of cardiac function. It enables the generation of 3D deformable models of the heart,
from which accurate diagnostic information can be derived. However, it is hard to ac-
quire high-resolution 3D cardiac MR images in animals due to the fast beating heart and
the breathing, especially from the experimental small animals, like a mouse. The mouse
heart is about 1000th the size of a human heart and beats much faster, at 400-600 beats
per minute (bpm), than a human heart, with 60-80 bpm. Although currently available
MRI instruments for mouse imaging operate at a higher magnetic field strength (4.7T or
above) than clinical MRI scanners, they are still unable to provide adequate spatial reso-
lution in 3D. In practice, only sparse good quality images on a few short- and long-axis
slices are acquired to visualize the cardiac motion. They provide enough information
for experts to visually analyze the cardiac motion, while it is still very challenging to
reconstruct a 3D heart model based on these sparse slices [15].

Most of the previous work focuses on left ventricle reconstruction based on short-
axis [9–11]. Since the short-axis images are parallel to each other, they are usually
combined to a 3D volume. However, due to the limited number of slices, the inter-slice
resolution is usually much lower than intra-slice directions. The distance between slices
is about 10 times the pixel distance inside each slice. During the MR image acquisition,
the long-axis images usually are first generated to localize the heart position, while
they are rarely used for the segmentation for the left ventricle [5, 12]. These images
have higher resolution in the long axis, which can help overcome the low inter-slice
resolution on short-axis images. Therefore, we utilize both short- and long-axis MR
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(a) Short axis image (b) Long axis image (c) 3D embedded view

Fig. 1: The mouse left ventricle has a ring shape on the short-axis images (a) and a
U shape on the long-axis images (b). By mapping them to the 3D anatomic space,
they intersect with the reconstructed left ventricle model exactly on the left ventricle
boundaries (c).

images simultaneously in this work for 3D left ventricle reconstruction. Each image at
different position provides different contours of the model. Meanwhile, the consistency
among them improves the robustness of the reconstruction.

The short- and long-axis images are instances of the same volume of different orien-
tations. Fradkin et al. [6] utilized their consistency to infer the short-axis image position
based on the long-axis segmentation result. However, the spatial relationship is only
used for initialization. The short-axis contours are then deformed independently. The
contours after deformation may be inconsistent with the long-axis ones. Koikkalainen
et al. [7] reconstructed a 3D heart model based on parallel MR images from the short
and long axes. Different from usual long-axis slices, which are radially placed, they
acquired parallel images in the long axis. The slices with different orientations are con-
sidered as volume data of the same region with different resolutions. A reference model
is registered with them simultaneously to overcome the insufficient sampling for each
single volume data. Since most long-axis images are not parallel in MR acquisition,
their method will require on additional protocol for heart reconstruction. van Assen et
al. [1] proposed a left ventricle reconstruction algorithm based on multiple shape priors.
Based on active shape models (ASMs), they first build a point distribution model from
training shapes, and then fit this model to all the 2D images to refine the segmentation.
The images generate forces on the intersection of the 3D model with the corresponding
2D plans. Similarly, sparse shape composition [16] is used to represent shape models
based on sparse reconstruction. The methods, like ASM, represent the shapes based on
a large number of training samples, but the training shapes are not always available in
clinical applications.

To address the limitations in previous efforts to incorporate 2D slices with arbi-
trary orientations for 3D left ventricle reconstruction, we introduce a new reconstruc-
tion framework. The main contributions of the work are as follows. First, all the slices
are segmented simultaneously with a 3D left ventricle model. The 2D contours are just
the projection of the model on the corresponding images, so we handle the inconsis-
tency among all the contours, i.e., the short- and long-axis contours are not exactly
intersected. Second, there are no restrictions on the position and orientation of each s-
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lice. Any additional slice will help improve the segmentation accuracy and robustness.
Third, only an elastic shape prior [4] is required in our framework. The reference shape
can be generated with one sample data or built manually by expert without any sam-
ple. Different from the methods based on multiple shape priors, which ensure that the
shape follows a point distribution model, we constrain the non-rigid deformation of the
reference shape. The 3D shape regularization term is integrated into all the 2D image
segmentations to form a unified problem, which is efficiently solved by our proposed
alternating optimization algorithm.

2 METHODOLOGY

Given a group of 2D cardiac MR images Ii, which have known transformations Ti to
the 3D anatomical coordinate system, we expect to reconstruct a 3D left ventricle shape
model T (Sre f ), where Sre f is a reference left ventricle model and T is a non-rigid trans-
formation. The projection of the reconstructed model T (Sre f ) onto image Ii is defined
as Pi(T (Sre f )). It should match with the left ventricle area in the image. The fitness of
the model to each image Ii is measured by the energy function Eimg. Since the slices
are sparse in the 3D volume, the reconstruction problem is under constrained with only
the image information. Therefore, we further assume the model is deformed from the
reference model Sre f with a smooth non-rigid deformation T . The model reconstruction
is formulated as the following optimization problem:

min
T

{Â
i

Eimg(Pi(T (Sre f )), Ii)+ gR(T )} (1)

where Eimg is the energy term for the fitness to each image Ii, R(T ) is the regularization
term for the deformation T and g is a trade-off parameter.

The image energy term Eimg is defined based on both the shape and appearance
information. The conventional active contour models focus only on the boundaries of
the models. They deform the contours to fit locations that have high probabilities to
be boundaries. In our model, we also consider the appearance of the interior region.
The appearance statistics are adaptively learned during the deformation. The model is
updated based not only on the edge information, but also the region statistics to ensure
the appearance consistency of the new territory. The region-based deformable model
is defined based on free form deformation. Instead of deformable contours, the whole
interior region is deformed to optimize both the edge and the region energy function:

Eimg = Eedg +µEreg (2)

where Eedg is the edge energy term, Ereg is the region energy term and µ is a constant
that balances the contributions from the two terms. In our formulation, we are able to
omit the model smoothness term in 2D images since the whole model smoothness is
regularized by the smooth non-rigid transformation of the 3D model.

The model is attracted to edge feature with high image gradient via the edge energy
term Eedg. A distance map to the edge feature is built based on gradient vector field [14].
The edge force moves the contour to the minimum of the distance map. Therefore, the
edge energy term Eedg is defined as:
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Alternating Updating

2D Contours
Contours

in 3D Space
Surface

Reconstruction
Reference
LV Model

Fig. 2: The pipeline of our 3D left ventricle system. The 3D surface model is deformed
from a reference model to fit 2D contours, while the 2D contours is constrained by both
image cues and 3D model prior. They are updated alternatingly to reconstruct the left
ventricle model.

Eedg =
Z

C
F(x)dx (3)

where C is the contour in a 2D image and F is the distance map function.
The probability of each pixel belonging to the model is defined based on the inte-

rior intensity distribution from last iteration. The region energy term deform the model
toward areas with high probability. It is defined as:

Ereg =
Z

R
logP(x)dx (4)

where R is the interior region of the contour and P is the probability of each pixel as the
interior region of the model.

The 2D contours are projections of one 3D left ventricle model to the corresponding
images. Therefore, different from the 2D deformation regularization term in previous
segmentation algorithms, we employ a 3D shape prior to constrain all the 2D segmenta-
tions simultaneously. The 3D model is defined based on the deformation of a reference
left ventricle model T (Sre f ). We regularize the non-rigid deformation T to ensure that
the new model is still similar to the reference one. The smoothness of transformation T
is defined as:

R(T ) =
Z

R3

T̃ (x̃)
G̃(x̃)

dx̃ (5)

where G is Gaussian kernel function and G̃ is its Fourier transform. Function T̃ indi-
cates the Fourier transform of the deformation function T and x̃ is a frequency domain
variable. Gaussian kernel is used as a low-pass filter to regularize the high frequency
part of the deformation and enforce the smoothness.
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Algorithm 1 3D left ventricle reconstruction
Input: The sparse images Ii with arbitrary orientation, and the reference left ventricle model
Sre f
Output: The data-specific 3D left ventricle model
Initialize the 2D contours Ci with graph cuts
repeat

Transform the contours Ci to 3D anatomic space
Deform the 3D reference model Sre f based on (7)
Find the model-plane intersections Pi(T (Sre f ))
Deform the contours Ci based on (8)

until Ci and T converge.

2.1 Deformable Model Implementations

The image forces are only defined on the intersection of the model in each plane. They
are not applied directly to the vertices of the model. Therefore, we introduce the con-
tours of the left ventricle on the images Ci and reformulate the energy function as:

min
Ci,T

{Â
i
[Eimg(Ci, Ii)+lD(Ci,Pi(T (Sre f )))]+ gR(T )} (6)

where D is the distance between the contour Ci and the projection of the left ventricle
model Pi(T (Sre f )). In this formulation, instead of deforming the reference model direct-
ly, the image forces only deform the 2D contours. Therefore, the whole energy function
is separated into two parts. The 2D contours and the 3D model can be optimized alter-
natingly with Algorithm 1.

We initialize the 2D segmentation via graph cuts [2, 3]. It is very effective to gen-
erate a coarse segmentation, while it requires lots of interaction to refine the result. In
our work, we use a two-stage segmentation for short-axis images based on its donut
shape [13]. We use only a few strokes to indicate the blood pool. Then the left ventricle
is automatically segmented with no further interaction. Furthermore, the long-axis im-
ages are also segmented via graph cuts, which initialized based on its relative position
with short-axis images. The regional segmentation results on all the images are then
translated into boundary ones and refined by Metamorphs [13].

The initial contours are first transformed to the 3D anatomic space. Then assuming
the contours Ci are fixed, the reference left ventricle model is deformed to the contours.
The energy function is reduced to:

min
T

{l Â
i

D(Ci,Pi(T (Sre f )))+ gR(T )} (7)

We use coherent point drift [8] to optimize (7). The result model maintains the shape
of the reference model, and balances the differences among the contours in different
slices.

The deformed model T (Sre f ) is then projected to the 2D spaces. We use them as
shape priors and optimize the contours Ci. In this step, the energy function is indepen-
dent for each slice:
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3: (a) The initial label for graph cuts, (e) the blood pool segmentation result, (b,
f) the left ventricle region (green) from graph cuts on both short- and long-axis im-
ages, (c, g) the boundaries based on graph cuts and (d, h) the finial result based on our
framework.

min
Ci

{Eimg(Ci, Ii)+lD(Ci,Pi(T (Sre f )))} (8)

where the distance function D are defined by the distance maps of the model projection
on the slices. This will make the contours more consistent with the left ventricle model.

During the alternating optimization, the parameter l will increase to further enforce
the consistency between the left ventricle model and all the contours. When l ! •, the
alternating algorithm (6) will converge to (1).

3 EXPERIMENTS

We test our reconstruction algorithm on mouse cardiac MR images. Sparse short- and
long-axis images are acquired from the C57BL/6 mice. For each data, there are four to
six short-axis slices that are parallel to each other with equal intervals, and four long-
axis slices that are radially spaced every 45�. Their positions in the anatomic space are
recorded during the acquisition.

We use a few strokes inside and outside the blood pool area, as shown in Fig. 3a,
to initialize the segmentation, and get the blood pool area in Fig. 3e. This step is rel-
atively stable due to the high intensity difference between the blood and heart wall.
Then the region just outside the blood pool is set as the left ventricle. Graph cuts is
used to produce a rough segmentation of the left ventricle on both short- and long-axis
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(a) Initial contours (b) Result contours (c) Result model

Fig. 4: (a) The initial 2D contours mapped onto 3D anatomic space, (b) the result con-
tours after deformation based on our framework and (c) the resulted 3D model embed-
ded onto a long-axis image.

images. The result of this step often leaks out to other tissues due to the similar in-
tensity among them (Fig. 3b, f). It consequently affects the corresponding boundaries
refined by Metamorphs, which cannot correct the region with heavy leak (Fig. 3c, g).
Our proposed deformable model overcome these problems with 3D shape constraints.
It achieves better segmentation result in 2D images (Fig. 3d, h).

We apply our alternating reconstruction algorithm to generate 3D left ventricle mod-
el based on the initial 2D contours. It is noticeable in Fig. 4a that the contours from the
short- and long-axis images do not intersect with each other based on only 2D informa-
tion. Our model introduces a 3D shape model to regularize all the contours. It improves
the the 2D segmentation results on different slices (Fig. 3d, h). Meanwhile, different
from the initial contours projected into anatomic space, the our results balance their
differences and make them consistent with each other (Fig. 4b). The 3D left ventricle
model is also constructed based on our model. It is embedded into a long axis image in
Fig. 4c. The model is smooth and match left ventricle wall in the image.

4 CONCLUSIONS

We have presented a new framework for 3D left ventricle reconstruction using sparse
short- and long-axis images based on only one shape prior. Less MR images are required
to acquire by using our method. This is not only very important for mouse cardiac
imaging, but also desired for human data acquisition, since it will reduce the potential
risk of strong magnetic field and improve the patient’s comfort. In the future, we will
test our framework on human cardiac MR data. Meanwhile, we will introduce a left
ventricle detection module to substitute graph cuts-based initialization and build a fully
automatic system.
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Abstract. Tensor total variation (TTV) regularized deconvolution has been pro-
posed for robust low radiation dose CT perfusion. In this paper, we extended TTV
algorithm with anisotropic regularization weighting for the temporal and spatial
dimension. We evaluated TTV algorithm on synthetic dataset for bolus delay,
uniform region variability and contrast preservation, and on clinical dataset for
reduced sampling rate with visual and quantitative comparison. The extensive
experiments demonstrated promising results of TTV compared to baseline and
state-of-art algorithms in low-dose and low sampling rate CTP deconvolution
with insensitivity to bolus delay. This work further demonstrates the effective-
ness and potential of TTV algorithm’s clinical usage for cerebrovascular diseases
with significantly reduced radiation exposure and improved patient safety.

1 Introduction

Cerebrovascular disease, or stroke, is the second leading cause of death worldwide after
cancer. CT perfusion (CTP) is one of the most widely used imaging modality for disease
diagnosis and assessment of treatment response in cerebrovascular diseases. However
the radiation exposure in CTP is has caused significant concerns in the community [1].

Numerous efforts have been proposed to reduce the necessary radiation dose to
meet the “as low as reasonably achievable” (ALARA) principle, including lowering
the radiation dose level, reducing the exposure time, using effective shielding for the
patients and increasing the distance between the body and the radiation source.

Recently, tensor total variation (TTV) regularization algorithm has been proposed
for robust low-dose CTP deconvolution [2] by reducing the tube current-exposure time
product measured in mAs, which varies linearly with the radiation dosage. TTV has
shown promising results in correcting the over-estimation of cerebral blood flow (CBF)
and under-estimation of mean transit time (MTT) at significantly reduced radiation level
(8%) compared to commercially available methods, such as standard singular value
decomposition (sSVD) [3], block-circulant singular value decomposition (bSVD) [4],
Tikhonov regularization (Tikh) [5], as well as the state-of-art learning-based method
sparse perfusion deconvolution (SPD) [6]. However, the robustness of TTV to bolus
delay, contrast preservation and low sampling rate has not been fully explored.

In this paper, we use both synthetic simulation and in-vivo clinical data to exten-
sively evaluate TTV algorithm in low-dose, low-sampling rate CTP data with bolus de-
lay. Block-circulant TTV algorithm shows encouraging performance in various tasks,



including contrast preservation, estimation at reduced sampling rate and robustness to
tracer arrival time in arterial input function. This work further demonstrates the effec-
tiveness and potential of TTV algorithm’s clinical usage in cerebrovascular diseases
with significantly reduced radiation exposure and improved patient safety.

2 Anisotropic Tensor Total Variation Regularized Deconvolution

TTV algorithm regularizes the convolution model with tensor total variation term to
reduce the oscillation and error in the recovered residue functions.

Let’s denote A 2 RL⇥L as the block-circulant Teoplitz matrix of the zero-padded
arterial input function c

art

(t) 2 RT⇥1, C 2 RL⇥N as the zero-padded contrast con-
centration curves c

voi

2 RT⇥1 in the region of interest (ROI) with N voxels, and
K 2 RL⇥N as the flow-scaled residue impulse functions, where L � 2T , and T is the
time length of the measured signal. k · k

TV

is the total variation norm. To estimate K,
TTV algorithm optimizes

K

ttv

= argmin

K2RT⇥N

(

1

2

kAK � Ck22 + kKk
TV

) (1)

Here we use anisotropic weighting for the tensor total variation term, instead of iso-
tropic weighting in [2]. It is based on the assumption that the piecewise smooth residue
functions in CTP should have small total variation, and the smoothness in the temporal
and spatial dimensions should be different. The tensor total variation term is defined as
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where ˜

K 2 RT⇥N1⇥N2⇥N3 is the 4-D volume obtained by reshaping matrix K based
on the spatial and temporal dimension. Here N = N1 ⇥ N2 ⇥ N3. The tensor to-
tal variation term here uses the forward finite difference operator using L1 norm. The
L1 norm here imposes sparsity in TV regularization term, which imposes smoothness
while preserving the edges. The regularization parameter �

i

, i = t, x, y, z controls the
regularization strength for the temporal and spatial dimension, and the larger the �

i

, the
more smoothing the TV term imposes on the residue function in i

th dimension.
We propose an algorithm to efficiently solve the problem in Eq. 1 inspired by the

framework of [7], as described in Algorithm 1.

3 Experiments

3.1 Synthetic Evaluation

Because the clinical CTP does not have ground truth perfusion parameter values for
comparison, we first use synthetic data to evaluate the proposed algorithm, using the
synthetic experiment setup in [4].



Algorithm 1 The framework of TTV algorithm.
Input: Regularization parameters �i, i = t, x, y, z

Output: Flow-scaled residue functions K 2 RT⇥N1⇥N2⇥N3 .
K

0
= 0

t

1
= r

1
= K

0

for n = 1, 2, . . . , N do
(1) Steepest gradient descent

Kg = r

n
+ s

n+1
(A

T
(C �Ar

n
))

where s

n+1
=

QTQ
(AQT )(AQ)

, Q ⌘ A

T
(Ar

n � C)

(2) Proximal map:

K

n
= prox�(2kKkTV )(Kg)

where prox⇢(g)(x) := argmin

u

n

g(u) +

1
2⇢ku� xk2

o

(3) Update t, r

t

n+1
= (1 +

p

1 + 4(t

n
)

2
)/2

r

n+1
= K

n
+ ((t

n � 1)/t

n+1
)(K

n �K

n�1
)

end for

Bolus Delay In Arterial Input Function: Circular deconvolution has been used
to correct the delay effect using circular representation of c

art

and c

voi

, but with lim-
ited improvement, as shown in Fig. 1, where the arterial input function is delayed by
5 s. bSVD and TTV use the block-circulant version of c

art

and c

voi

, while sSVD and
Tikhonov use standard deconvolution. Though bSVD shows relatively improved perfor-
mance compared to sSVD and Tikh, the estimated CBF (the maximum value of residue
function) is still over-estimated to be around 30 mL/100g/min. On the other hand, TTV
is able to correct the bolus delay and estimate accurate residue function.

Uniform Region Variability: From the recovered residue function, perfusion pa-
rameters CBF and MTT can be estimated. We generate a small region containing 40⇥40

voxels with the same perfusion characteristics, and compute the mean and standard de-
viation of the perfusion parameters over this region.

1) The ideal variability of the uniform region should be zero. Fig. 2 shows the esti-
mated perfusion maps of the reference and four methods on the uniform region. While
the baseline methods behave poorly in recovering the smooth region, TTV results in uni-
form perfusion maps for all three parameters at PSNR = 15. SPD reduces the noise level
in estimating the three perfusion parameter maps compared to other baseline methods,
but the over-estimation in CBF and under-estimation in MTT could not be corrected
using SPD. In comparison, TTV not only decreases the noise standard deviation in the
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Fig. 1. (a) The delayed arterial input function with 5 s delay compared to tracer arrival at the
tissue. (b)-(f) The recovered residue functions by baseline methods and TTV. The parameters
used for residue function recovery are the simulation is CBV = 4 mL/100 g, CBF = 20 mL/100
g/min, PSNR=25.
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Fig. 2. Visual comparison in a uniform regions of perfusion parameter estimation using baseline
methods and TTV. The ideal variation is 0. The reference is the ground truth at CBV = 4 mL/100
g, CBF = 20 mL/100 g/min, MTT = 12 s, PSNR = 15.
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Fig. 3. Comparisons of reducing variations over homogeneous region of (a) CBF at different
CBF values with PSNR = 15. (b) MTT at different true MTT values with PSNR = 15. (c) CBF
at different PSNR values with true CBF = 20 mL/100 g/min. (d) MTT at different PSNR values
with true MTT = 12 s.



estimated perfusion maps, but also estimatess the accurate quantitative parameters for
CBF and MTT.

2) Quantitative comparison is shown in Fig. 3(a)-(b) (where CBF or MTT varies)
and Fig. 3 (c)-(d) (where PSNR varies). All figures show that TTV produces lower CBF
and MTT variations than the sSVD, bSVD and Tikhonov methods. SPD achieves lower
variation than TTV in MTT estimation at different true MTT values in Fig. 3(c), but the
mean estimated value of MTT in Fig. 2(b) shows under-estimation of MTT, compared
to the ground truth.
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Fig. 4. Comparisons of CBF and MTT estimated by the different deconvolution algorithms in
preserving edges between two adjacent regions at PCNR=1 and 0.2. CBV is not shown because
it is uniform in the region. True CBF is 70 and 30 mL/100 g/min on the left and right halves of
the region. CBV is uniform in the region at 4 mL/100g. True MTT is 3.43 and 8 s on the left and
right halves. Temporal resolution is 1 sec and total duration of 60 sec.

Contrast preserving: Contrast is an important indicator of how well two neigh-
boring different regions can be distinguished. The contrast of perfusion parameters be-
tween the normal and abnormal tissue computed using the deconvolution algorithm
from the noisy data should be comparable to that of the noise-free CTP data. To com-
pare the performance of the baseline methods and TTV in preserving contrast, we
generate synthetic CTP data spatially containing two 40 ⇥ 20 uniform regions with
different perfusion characteristic. Peak contrast-to-noise ratio (PCNR) is defined as
PCNR = max |I1 � I2|/�, where I1 and I2 are the perfusion parameter values of
then two images to be compared for contrast.



Fig. 4 shows the estimated CBF and MTT by the different algorithms when PCNR=1
and 0.2. The corresponding �=40 and 200. While baseline methods sSVD, bSVD and
Tikhonov perform poorly at both PCNR levels, SPD and TTV yield improved CBF and
MTT maps with regard to the reference. When the PCNR = 1 and the noise level is
moderate, both SPD and TTV are capable of removing the noise and preserving the
contrast. However the spatial resolution at the boundary of two regions is smoothed
by SPD, compared to the clear-cut boundary using TTV. When the PCNR is as low as
0.2, the contrast to noise ratio is extremely low. sSVD, bSVD and Tikhonov generate
severely biased perfusion parameters. SPD reduces the noise level to certain extent, but
is unable to correct the estimation bias in CBF and MTT. TTV performs favorably com-
pared to all baseline methods in preserving the edges between two adjacent regions in
CBF and MTT, as well as accurate estimation of perfusion parameters.

3.2 Clinical Evaluations

Retrospective review of consecutive CTP exams performed on aneurysmal subarach-
noid hemorrhage patients enrolled in an IRB-approved and HIPAA-compliant clinical
trial from August 2007-Dec 2013 was used. Ten consecutive patients (9 women, 1 men)
admitted to the Weill Cornell Medical College, with mean age (range) of 54 (35-83)
years were included. 5 patients had brain deficits shown in the CTP images and the
other 5 patients had normal brain images.

Because repetitive scanning of the same patient under different radiation levels is
unethical, low-dose Perfusion maps are simulated from the high-dose 190 mAs by
adding correlated statistical noise [8] with standard deviation of �

a

= 25.54, which
yields PSNR=40. The maps calculated using bSVD from the 190 mAs high-dose CTP
data is regarded as the “gold standard” or reference images in clinical experiments.
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Fig. 5. Comparisons of RMSE and Lin’s CCC among the four methods. TTV results in significant
(P < 0.001) lower RMSE and higher Lins CCC compared with all the baseline methods.

Visual Comparison: At normal sampling rate of 1 s and reduced temporal sampling
rate of 2 s and 3 s, the errors of CBF estimation in the four baseline algorithms increase,
while TTV maintains accurate estimation for CBF value at all sampling rates.
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Fig. 6. The CBF maps with roomed ROI regions of a patient computed using different deconvo-
lution methods at sampling rate (SR) of 1 s, 2 s and 3 s with 15 mAs tube current. At normal
sampling rate 1 s, baseline methods over-estimate CBF values. At reduced sampling frequency
2 s, sSVD still over-estimate while bSVD, Tikhonov and SPD under-estimate CBF values. At
reduced sampling rate of 3 s, baseline algorithms under-estimate CBF values. At all sampling
rates, TTV accurately estimate the CBF values. (Color image)



Quantitative Comparison: Fig. 5 shows significant improvement in image fidelity
between the low-dose CBF maps and the high-dose CBF maps by using the TTV al-
gorithm compared to the baseline methods. On average, the root-mean-square-error
(RMSE) decreases by 40%, Lin’s CCC increases by 89% from the best performance
by using the baseline methods. The quantitative values are computed with the vascular
pixel elimination to exclude the influence of high blood flow values in the blood vessels.

3.3 Parameters

In the TTV algorithm, there is only a single type of tunable parameter: the TV regular-
ization weight. If the spatial and temporal regularization are treated equally, only one
weighting parameter � needs to be determined. Fig. 7(a) show the RMSE at different �
values. When � < 10

3, RMSE does not change much. The optimal � is between 10

�4

to 10

�3.
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Fig. 7. Performace in terms of root-mean-square-error (RMSE) for different parameters (a) � and
(b) ratio �t/�s.

Since the temporal and the spatial dimensions of the residue impulse functions have
different scaling, regularization parameters for t and x, y, z should be different too. We
set the spatial �

s

= �

x,y,z

= 10

�4 since the spatial dimensions have similar scaling, and
tune the ratio between the temporal weight �

t

and spatial weight �
s

. Fig. 7(b) shows
that when the ratio �

t

/�

s

< 10

�4, the performance is stable. Compared to isotropic
TTV, anisotropic TTV with the ratio of spatial and temporal regularization weight set
to 10

�4 output improved result from Fig. 7(b). Thus we set �
t

= 10

�8 and �

s

= 10

�4

for all experiments.

4 Conclusion

In this paper, we extended the tensor total variation regularized (TTV) deconvolution
algorithm with anisotropic regularization weighting for the temporal and spatial di-
mensions. We evaluated TTV algorithm for bolus delay, uniform region variability and



contrast preservation on synthetic dataset, as well as for reduced sampling rate with vi-
sual and quantitative comparison on clinical dataset. The extensive experiments demon-
strated the superiority of TTV compared to baseline and state-of-art algorithms in low-
dose and low-sampling-rate CTP deconvolution with insensitivity to tracer arrival time.
Future research include evaluation of TTV algorithm on larger-scale clinical datasets
with acute stroke and other cerebrovascular diseases.
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Abstract Functional Magnetic Resonance Images acquired during rest-
ing-state provide information about the functional organization of the
brain through measuring correlations between brain areas. Independent
components analysis is the reference approach to estimate spatial com-
ponents from weakly structured data such as brain signal time courses;
each of these components may be referred to as a brain network and
the whole set of components can be conceptualized as a brain functional
atlas. Recently, new methods using a sparsity prior have emerged to deal
with low signal-to-noise ratio data. However, even when using sophisti-
cated priors, the results may not be very sparse and most often do not
separate the spatial components into brain regions. This work presents
post-processing techniques that automatically sparsify brain maps and
separate regions properly using geometric operations, and compares these
techniques according to faithfulness to data and stability metrics. In par-
ticular, among threshold-based approaches, hysteresis thresholding and
random walker segmentation, the latter improves significantly the sta-
bility of both dense and sparse models.

Keywords: region extraction, brain networks, clustering, resting state
fMRI

1 Introduction

Functional connectivity between brain networks observed during resting state
functional Magnetic Resonance Imaging (R-fMRI) is a promising source of di-
agnostic biomarkers, as it can be measured on impaired subjects such as stroke
patients [9]. However, its quantification highly depends on the choice of the brain
atlas. A brain atlas should be i) consistent with neuroscientific knowledge ii) as
faithful as possible to the original data and iii) robust to inter-subject variability.

Publicly available atlases (such as structural [8] or functional [13] atlases)
went through a quality assessment process and are reliable. To extract a data
driven atlas from R-fMRI, Independent Component Analysis (ICA) remains the
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reference method. In particular, it yields some additional flexibility to adapt the
number of regions to the amount of information available. Networks extracted by
ICA are full-brain and require a post-processing step to extract the salient fea-
tures, i.e., brain regions, which is often done manually [5] (see figure 3). To avoid
post-processing and directly extract regions, more sophisticated approaches rely
on sparse, spatially-structured priors [1]. Indeed, maps of functional networks or
regions display a small number of non-zero voxels, and thus are well characterized
through a sparsity criterion, even in the case of ICA [11,3]. However, sophisti-
cated priors such as structured sparsity come with computational cost and still
fail to split some networks into separate regions. Altogether, region extraction is
unavoidable to go from brain image decompositions to Regions-of-Interest-based
analysis [6].

A simple approach to obtain sharper maps is to use hard thresholding, which
is a good sparse, albeit non convex, recovery method [2]. We improve upon it by
introducing richer post-processing strategies with spatial models, to avoid small
spurious regions and isolate each salient feature in a dedicated region. Based
on purely geometric properties, these take advantage of the spatially-structured
and sparsity-inducing penalties of recent dictionary learning methods to isolate
regions. These can also be used in the framework of computationally cheaper ICA
algorithms. In addition to these automatic methods that extract brain atlases,
we propose two metrics to quantitatively compare them and determine the best
one. The paper is organized as follows. In section 2, we introduce the region
extraction methods. Section 3 presents the experiments run to compare them.
Finally, results are presented in section 4.

2 Region extraction methods

Extracting regions to outline objects is a well-known problem in computer vision.
For the particular problem of extracting regions of interest (ROIs) out of brain
maps, we want a method that i) handles 3D images ii) processes one image
while taking into account the remainder of the atlas (e.g., region extraction for a
given image may be di↵erent depending on the number of other regions) and iii)
isolates each salient feature from a smooth image in an individual ROI without
strong edges or structure (see figure 1). Here, we assume that a given set of brain
maps has been obtained by a multivariate decomposition technique.

Most of the following methods allow overlapping components after region ex-
traction. In fact, multivariate decomposition techniques most often decompose
the signal of one voxel as a linear mixture of several signal components. In prac-
tice, these overlapping regions are small and located in areas of low confidence.
Voxels that belong to no component are left unlabeled.

2.1 Foreground extraction

Let I = {I1, ..., Ik} be a set of brain maps (3D images), or atlas. I(p) designates
the value for image I at point p. We define by F(I) the set of foreground points
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of image I, i.e., the points that are eligible for region extraction. We propose
two strategies to extract the foreground.

Hard assignment. Hard assignment transforms a set of maps into a brain seg-
mentation with no overlap between regions. That means that each voxel will be
represented by a unique brain map from the atlas. This map is the one that has
the highest value for this voxel. The result is a segmentation from which we can
extract connected components.

F
hard

(I
i

) = {p 2 I
i

| argmax
j2[1,k] Ii(p) = i}

Automatic thresholding. Thresholding is the common approach used to extract
ROIs from ICA. However, the threshold is usually set manually and is di↵erent
for each map. In order to propose an automatic threshold choice, we consider
that on average, an atlas assigns each voxel to one region. For this purpose, we
set the threshold tk(I) so that the number of nonzero voxels corresponds to the
number of voxels in the brain:

F
automatic

(I
a

) = {p 2 I
a

, I(p) > tk(I)}

2.2 Component extraction

Connected components. Let N (p) be the set of neighbors of point p. Two points
p1 and p

n

are N -connected if p
n

can be reached from p1 by following a path of
consecutive neighboring points:

(p1, pn) N -connected ⌘ 9(p2, ..., pn�1) : pi+1 2 N (p
i

), 8 i 2 [1, n� 1]

We define a connected component as a maximum set of foreground points that
are N -connected. The set of all N -connected components for a given image I
(see figure 1.c1) is written ccs(N , I). Extraction of connected components can be
done after hard assignment or automatic thresholding to obtain ROIs (figures 2
and 3). In the following methods, we consider the points extracted with auto-
matic thresholding as foreground (F = F

automatic

) and use more sophisticated
priors to extract ROI.

Figure 1. Example of region extraction. Foreground pixels (b) are extracted from the
original image (a). Regions are extracted using connected component extraction (c1)
or random walker (c2).
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Hysteresis thresholding. Hysteresis thresholding is a two-threshold method where
all voxels with value higher than a given threshold t

high

are used as seeds for
the regions. Neighboring voxels with values between the high threshold t

high

and
the low threshold t

low

are added to these seed regions. In our setting, the high
threshold can be seen as a minimal activation value over the regions in order to
sort out regions of marginal importance. Each brain map has its own optimal
value but, in practice, cross validation has shown that keeping the 10% highest
foreground voxels as seeds gives the best results. The automatic thresholding
strategy described above is used to set the low threshold t

low

.
Conserving connected components that have their maximum value over t

high

is done at component extraction:

ccs
hysteresis

(N , I) = {c 2 ccs(N , I) | max(c) � t
high

}

Random Walker. RandomWalker is a seed-based segmentation algorithm similar
to watershed. It calculates, for each point p, the probabilities to end up in each
of the seeds by doing a random walk across the image starting from p. The
original version of the algorithm [4] was of probabilistic nature, whereby the
probability to jump to a neighboring point is driven by the gradient magnitude
between them. After convergence the point is attached to the seed with the
highest probability.

Random Walker can also be seen as a di↵usion process. It is equivalent to
hysteresis thresholding where regions that have grown enough to share a bound-
ary are not allowed to be merged. The probabilities to reach each of the seeds
can be computed using the laplacian matrix of the graph associated with the
map. Due to space limitations we refer the reader to [4] for the complete de-
scription of the algorithm. We suppose seed(p) returns the seed associated with
point p. We refine our neighborhood relationship by considering two points as
neighbours only if they are associated to the same seed:

N
rw

(p) = {q 2 N , seed(p) = seed(q)} ; ccs
rw

(I) = ccs(N
rw

, I)

Note that, in our setting, a high value in the map means a high confidence. So,
instead of using the finite di↵erence gradient, we consider the max of the image
minus the lowest voxel. Therefore, di↵usion is facilitated in areas of high confi-
dence and more di�cult elsewhere. We take the local maxima of the smoothed
image as seeds for the algorithm.

3 Experiments

Experiments are made on a subset of the publicly available Autism Brain Imag-
ing Database Exchange5 dataset. Preprocessing is done with SPM and includes
slice timing, realignment, coregistration to the MNI template and normalization.
We select 101 subjects su↵ering from autism spectrum disorders and 93 typical

5
http://fcon_1000.projects.nitrc.org/indi/abide/
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controls from 4 sites and compute brain atlases on 10 cross-validation iterations
by taking a random half of the dataset as the train set. We extract regions from
these atlases and quantify their performance on the other half of the dataset
with two metrics.

We investigate two decomposition methods to extract brain maps from rest-
ing-state fMRI: ICA –independent component analysis– that yields full brain
continuous maps, and MSDL –multi-subject dictionary learning–, [1], that di-
rectly imposes sparsity and structure on the maps thanks to the joint e↵ect of
`1 norm and total variation minimization. Our goal is to compare the e↵ects of
region extraction on sparse and non-sparse sets of maps.

To quantify the usefulness of a set of regions extracted automatically, we
consider metrics that characterize two di↵erent aspects of the segmentation: the
ability to explain newly observed data and the reproducibility of the informa-
tion extracted, as in the NPAIRS framework [7]. We use Explained Variance
(EV) to measure how faithful the extracted regions are to unseen data. Stability
with regards to inter-subject variability is measured using Normalized Mutual
Information (NMI) over models learned on disjoint subsets of subjects.

Following [10], we extract k = 42 maps. For the metrics to be comparable, we
need to apply them on models of similar complexity, i.e. with the same number of
regions. For this purpose, we assume that there must be on average 2 symmetric
regions per map (some of them may have more, and some of them may have
only one inter-hemispheric region). We therefore aim at extracting 2k regions,
and take the largest connected components after region extraction. In the end,
some maps may not contribute to the final atlas.

3.1 Data faithfulness – Explained variance

The explained variance measures how much a model accounts for the variance of
the original data. The more variance is explained, the better the model explains
the original data. Linear decomposition models original data y

orig

by decom-
posing them into two matrices. In our case, these matrices are brain networks
I and their associated time series y

model

. Time series of regions are measured
using least square fitting instead of simple averaging to handle mixed features
in region overlaps. Explained variance of these series is then computed over the
original ones.

y
orig

= I⇥y
model

+y
"

; EV(y
model

) = 1� Var(y
"

)

Var(y
orig

)
=

Var(y
orig

)�Var(y
model

)

Var(y
orig

)

3.2 Stability – Normalized Mutual Information

To assess model stability, we rely on Normalized Mutual Information, a standard
clustering similarity score, applied on hard assignments [12]: given two hard
assignments U and V with marginal entropy H(U) and H(V ) respectively,

NMI(U, V ) =
H(U) +H(V )�H(U, V )p

H(U) ⇤H(V )
;H(X) = �

nX

i=1

p(x
i

) log p(x
i

)
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4 Results

Figure 2 presents region extraction results using each method on the same map.
In all figures, the threshold applied during region extraction is shown in a given
slice to help understanding. Results for each metric are displayed on the right.
We vary parameters for each model (smoothing for ICA, 3 parameters of MSDL)
and, for each region extraction method, display the best 10% results across
parametrization. Figure 3 shows 2 networks out of 42 extracted.

Region shape The regions extracted by hard assignment (figure 2.a) present
salient angles and their limits do not follow a contour line of the original map.
The straight lines are the results of two maps in competition with each other.
The 1D cut shows that the threshold applied when using hard thresholding is
not uniform on the whole image. The other methods look smoother and follow
actual contour lines of the original map. On this particular example, automatic
thresholding (figure 2.b) extracts 2 regions: a large one on the left and a very
small one on the right. This is one of the drawbacks of thresholding: small regions
can appear when their highest value is right above the threshold. Thanks to its
high threshold, hysteresis thresholding (figure 2.c) gets rid of the spurious regions
but still fails to separate the large region on the left. Random Walker (figure 2.d)
manages to split the large region into two subregions.

Similarly, in figure 3 we can see that Random Walker manages to split the
default mode network into 3 components, where other methods extract two.

Stability. Random Walker dominates the stability metric. It uses local maxima
to get regions seeds, and will thus split regions even if they are connected after
thresholding. Its performance is statistically significant for both dense and sparse
atlases and any parametrization. The stability improvement is larger for sparse
than for dense maps. This could be due to the inability of random walker to
compensate for the original instabilities of the models.

Data fidelity. The explained variance scores on best performing models, shown
in figure 2, are similar for all methods. In poorly performing models, we observe
that automatic and hysteresis thresholdings are slightly above random walker
(about 2%), exhibiting the same trade-o↵ as in [1].

5 Discussion and conclusion

Functional atlases extracted using ICA or sparse decomposition methods are
composed of continuous maps and sometimes fail to separate symmetric func-
tional regions.

Starting from hard thresholding [2], we introduce richer strategies integrating
spatial models, to avoid small spurious regions and isolate each salient feature
in a dedicated region. Indeed, the notion of regions is hard to express with
convex penalties. Relaxations such as total-variation used in [1] only captures it
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a. Hard thresholding b. Automatic thresholding

c. Hysteresis thresholding d. Random Walker

Figure 2. Comparison of region extraction methods (after selection of 2k regions).
Brain maps obtained with MSDL are located on the left. The activated regions are
symbolically represented below in a height map. The bars on the right of each image
represent the Normalized Mutual Information and Explained variance obtained on
dense maps (ICA) and sparse maps (MSDL). Random walker is the most stable method.

Visual cortex

| {z } | {z }
Original Manual Hard Automatic Hysteresis Random Walker

Default mode network

| {z } | {z }
Original Hard Automatic Hysteresis Random Walker

Figure 3. Region extraction from ICA maps using di↵erent approaches. For each net-
work, Random Walker is better at extracting ROIs
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partially, while a non-convex segmentation step easily enforces regions. We find
that a Random-Walker based strategy brings substantial increase in stability
of the regions extracted, while keeping very good explanatory power on unseen
data. Finer results and interpretation may arise by using more adapted metrics,
for example a version of DICE that can deal with overlapping fuzzy regions. This
point is under investigation.
Acknowledgments We acknowledge funding from the NiConnect project and
NIDA R21 DA034954, SUBSample project from the DIGITEO Institute, France.
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Abstract. Shape prior modeling is a challenging and crucial component in vari-

ous image segmentation applications. Most existing methods aim at dealing 

with single object’s shape variation, which are not directly applicable for multi-

shape prior modeling. In this paper, we present an extension of recently pro-

posed Spare Shape Composition model (SSC) for multi-shape prior modeling. 

In this extension, multiple shapes of one patient are regarded as a group. A 

sparse linear composition of training groups is computed iteratively to in-

fer/refine the input group. Thus, not only the a-priori information of each shape 

but also the a-priori codependency information among different shapes is im-

plicitly incorporated on-the-fly. To validate the efficacy of our method, a 2D 

left ventricular endocardium and epicardium localization experiment was con-

ducted. The localization result demonstrates that the utilization of our method 

can achieve more accurate and stable localization compared with SSC. 

1 Introduction 

In various image segmentation applications, especially in the field of medical image 

segmentation, methods solely relying on image appearance cues usually tend to 

achieve unsatisfactory result. The fact that objects usually contain strong shape priors, 

gives rise to various shape model based segmentation methods. Leventon et al. [1] 

defined a probability distribution over the variances of training shapes, and utilized it 

to restrict the flow of the geodesic active contour. In [2], Cremers et al. incorporated 

statistical shape knowledge in the evolution process of a Mumford-Shah based seg-

mentation [3]. Ali et al. [4] integrated prior shape constraints into a graph cuts frame-

work for kidney segmentation. Such segmentation approaches have been proven to be 

one of the most successful methods in practice, and outperform the conventional 

methods in both robustness and accuracy owing to the integration of a-priori infor-

mation. 

Shape prior modeling plays a significant role in these methods, and is very crucial 

for the final accuracy and robustness. A straightforward approach is to learn from a 

number of training shapes by statistical means, leading to statistical shape models 

(SSMs) [5]. Active Shape models [6] and Active Appearance models [7] proposed by 



Cootes et al. in 1995 and 2001, probably are two of the most popular methods in this 
area. Another widely-used method is level set shape prior model [8]. Subsequently, 
plenty of adaptations of these algorithms were proposed. 

Recently, sparsity theory was introduced into shape prior modeling by [9, 10]. In 
their model, a sparse composition of training shapes is computed adaptively to in-
fer/refine an input shape. Thus, it was named as Sparse Shape Composition model. 
With such a setting, it is capable of modeling complex shape variations, and preserv-
ing local details very well. Furthermore, when modeling a sparse error vector, it be-
comes quite robust to sparse non-Gaussian errors. 

However, most of existing models are focusing on single shape prior modeling, 
and not directly applicable to deal with multiple shapes due to the lack of prior co-
dependency information utilization. Such co-dependency among different shapes is of 
great value for various medical image analysis tasks. For instance, the implicit spatial 
relationship between endocardium and epicardium of left ventricle can be utilized as a 
supplementary to their shape priors for accurate localization or segmentation purpose. 
Endocardium and epicardium of left ventricle are very important for quantitative 
analysis of global and regional cardiac function, such as ejection fraction (EF), left 
ventricle myocardium mass (MM), and stroke volume (SV) [11]. In Fig.1 a 2D in-
stance from cardiac cine-MR short axis images is shown.  

Inspired by [9], we present an extension of SSC which aims at dealing with multi-
shape prior modeling. In our method, multiple interested shapes are regarded as a 
group, and modeled together by a sparse linear combination of training groups. With 
such a mechanism, the a-priori spatial constraint among different shapes is also im-
plicitly applied. It has the same advantages of SSC, due to the utilization of the same 
basic idea and optimization framework proposed in SSC.  

  
Fig. 1. Left: 2D cardiac cine-MR short axis image. Right: Manually delineated endocardial 

contour (drawn as green) and epicardial contour (drawn as red) of left ventricle. 



2 Improved  Sparse Shape Composition model 

Our model aims at modeling any number of complicated shapes simultaneously with 
a pre-defined training repository. Shapes may refer to shapes of different objects (e.g., 
shapes of femur bone, femur cartilage, tibia bone and tibia cartilage of one patient) or 
shapes of a time-varying object (e.g., shapes of heart), and regarded as a group in our 
method. The details of how we advanced SSC to our method will be presented in this 
section. 
2.1 From shape representation to group representation 

Following SSC, explicit parametric shape representation1 is employed in this method. 
Specifically, shape instance is represented by a column vector concatenated by coor-
dinates of all its vertices. For instance, column vector ݄݁ܽݏ of a 3D mesh which 
contains 100 vertices is concatenated as Eq. (1).  

Let ݉ represents the number of shapes required to be modeled. Vertex number and 
column vector of the ݅th shape are notated by ݇  and ݄݁ܽݏ א Թ×ௗ  respectively, 
where ݀ stands for the dimension of shapes. Then, a column vector ݃ which repre-
sents the group consisted of these ݉  shapes can be constructed by concatenating 
݅  for݄݁ܽݏ = 1,2, … ,݉, as shown in Eq. (2). 

݄݁ܽݏ   ଶݖ ଶݕ ଶݔ ଵݖ ଵݕ ଵݔ] …  ଵ]் (1)ݖ ଵݕ ଵݔ

 ݃  ቂ݄݁ܽݏଵ்  ݄݁ܽݏଶ்  … ்ቃ݄݁ܽݏ  
்
א ܴσ   × ௗ (2) 

2.2 Matrix of training repository 

Assume there are ݊ group samples with manual delineation in the training repository, 
which are quite sufficient to model variations of shapes and the spatial relationship 
among them. A matrix which represents the training repository can be constructed 
based on these samples. An illustration can be found in Fig. 2. It should be noticed 
that there should be a consistency among columns through this matrix. Specifically, 
vertex numbers of ݉ shapes should keep consistent, and shape vertices should be one-
to-one corresponding through these groups. Two methods are introduced to acquire 
consistency of shapes in [9]. Both of them can be extended to groups quite intuitional-
ly. We assume this consistency is already achieved here. 

After the conversion of all these groups into column vectors, apply pre-alignment 
to eliminate the position and orientation difference and transform them into a standard 
coordinate system. Pre-alignment is a two-step procedure based on the generalized 
Procrustes analysis [12]: first, select a group vector as reference and align others to it, 
take the transformed vectors and the reference vector as initial aligned groups; se-
cond, in order to remove the bias caused by the selection of reference, compute the 
mean vector of these initial aligned groups, take it as the new reference and align 

1  2D and 3D shapes are represented by curves or meshes composed of a number of vertices.  
                                                           



others to it to get the final aligned groups. These final aligned groups vectors are no-
tated by ݃ for ݆ = 1,2, … ,݊. Shape vectors of ݃ are notated as ݏǁ for ݅ = 1,2, … ,݉. 

Finally, aligned group vectors are assembled together parallelly to concrete the ma-
trix of training repository which is denoted as ܦ = [ ݃ଵ ݃ଶ … ݃]. 

. . .

݃1 

...

 ǁ11ݏ

 ǁ12ݏ

ǁ1݉ݏ  

. .
 .

݃2 

...

 ǁ21ݏ

 ǁ22ݏ

ǁ2݉ݏ  

. .
 .

݃݊  

...

 ǁ݊1ݏ

 ǁ݊2ݏ

ǁ݊݉ݏ  

. .
 .

 
Fig. 2. Diagram illustrating the matrix of training repository. 

2.3 Problem formulation and optimization framework 

The basic idea of SSC can be intuitionally extended to groups: for any input group 
ݕ = ଵ்ݕ] ଶ்ݕ  … ்[்ݕ , an optimal sparse linear combination of existing training 
groups can be found to approximately represent it. The weights or coefficients are 
denoted as ݔ א ܴ, and the optimal value of it is denoted as ݔ௧ א ܴ. ݔ௧ is found 
by solving Eq. 3 utilizing the optimization method proposed in [9]. 

൯ߚ,ݕmin௫,,ఉฮܶ൫݃ݎܽ  െ ݔܦ െ ݁ฮଶ
ଶ , .ݏ .ݐ  ԡݔԡ  ݇ଵ,  ԡ݁ԡ  ݇ଶ  (3) 

2.4 Difference from SSC 

When modeling ݉ shapes from a group, SSC required to be conducted for ݉ times. 
Each time an optimal sparse weight vector is computed for a single input shape. 
Compared with the unique optimal weight vector ݔ௧ calculated based on our meth-
od, these ݉ vectors tend to differ from each other in practice. Thus, group constraint 
or co-dependency among different shapes is not utilized in the modeling process. 



3 Endocardium and epicardium localization 

Following the organ localization framework proposed in [9], we conducted an exper-
iment to verify our method, i.e., left ventricular endocardium and epicardium localiza-
tion from 2D cardiac cine-MR images [12], and compared it with the original SSC. In 
this experiment, endocardium and epicardium are regarded as a group and localized 
simultaneously; training repository is consisted of 15 groups from different patients; 
91 images from 28 patients are tested. 

3.1 Details of localization experiment 

This experiment is focusing on the 2D images with papillary muscles, for the con-
venience of achieving consistency of group vectors. These images are capable of de-
fining 8 landmarks through centers of the two largest papillary muscles. Two intersec-
tion points of the line which passes through these centers and the manual endocardial 
contour, are considered as endocardium landmarks; then, the midperpendicular of 
these landmarks can be found, which intersect with endocardium at the last two endo-
cardium landmarks. The epicardium landmarks are defined in the same method. After 
the determination of landmarks, a certain number of vertices are interpolated between 
two neighboring landmarks along both manual contours to form the group vectors in 
the training matrix. In our experiment, the vertex number of endocardial contour in a 
group vector is 50, and 70 for epicardial contour. Two training samples from the re-
pository are shown in Fig. 3. After the determination of landmarks and group vertices, 
the matrices of training landmarks and groups can be formed based on the method 
described in section 2.1 and 2.2, and notated as ܦ  and ீܦ . 

 
Fig. 3. Two images with papillary muscle centers, landmarks, endocardium and epicardium 

contour vertices. 

Given a testing image, the localization procedure is as follows: first, manually la-
beling its landmarks, notated as ݕ; then, ݔ௧ and ߚ௧ are computed by optimizing 



Eq. (3) with ܦ  and ݕ; at last, transforming ݔீܦ௧ back to the coordinate system of 

testing image as the group location. 

In order to compare our method with the original SSC, SSC was also employed in 

the same localization framework with same training data and input landmarks to sepa-

rately localize the endocardium and epicardium of left ventricle. 

3.2 Evaluation and comparison 

Evaluation 
In addition to visual evaluation of localization accuracy, three quantitative measures 

are employed: average perpendicular distance (APD) [12], standard deviation of per-

pendicular distances (SPD), and dice metric (DM) [13]. As the name implies, APD 

and SPD measures the perpendicular distances from points on the localization result 

to manual contour, and calculate the average and standard deviation of them. Higher 

APD or SPD implies that localization result doesn’t match closely to the manual con-

tour. DM measures the overlap rate of the areas surrounded by localization and manu-

al contour. It ranges between 0 and 1, with higher DM indicating better match. 

Comparison 
Accuracy and robustness of endocardium and epicardium localization based on our 

method and the original SSC are compared in this section. Three localization cases 

from different patients are shown in Fig. 4. The left column shows a case that both 

SSC and our method achieve acceptable result. The middle column shows a case that 

SSC fails in the localization, whereas our method still performs well. The right col-

umn shows an extreme case that neither method locates the endocardium and epicar-

dium accurately due to the insufficiency of training samples, which is quite rare in our 

experiment. Despite the failure in the third case, our method outperforms the original 

SSC in all three cases from both visual and quantitative point of view. Furthermore, in 

order to compare them from the big picture, global APD, SPD and DM of our method 

and SSC are calculated statistically on 91 testing images, as shown in Table 1.  

Table 1. Global APD, SPD and DM 

Measures 
SSC Improved SSC 

Endocardium Epicardium Endocardium Epicardium 

Global APD 3.3554 2.7553 2.3493 2.2032 

Global SPD 2.4982 1.9412 1.6836 1.5741 

Global DM 0.8766 0.9224 0.9124 0.9363 

From the evidence provided in Fig. 4 and Table 1, we can reasonably arrive at a 

conclusion that our method can achieve more accurate and stable localization in this 

study compared with SSC. 



 

 

 

 
Fig. 4. Three localization cases. First and second row: endocardium and epicardium localiza-

tion utilizing SSC. Third and fourth row: endocardium and epicardium localization utilizing our 
method. 



4 Conclusion 

In this paper, we proposed an extension of Sparse Shape Composition model for 
multi-shape prior modeling. In our method, multiple interested shapes from one pa-
tient are regarded as a group and modeled together to incorporate the co-dependency 
among different shapes. It is validated on a 2D endocardium and epicardium localiza-
tion task, and exhibits more accurate and stable performance compared with original 
SSC. The success of our method is mainly relying on the incorporation of co-
dependency among shapes. 

In the future, we intend to apply this extension to various multi-shape segmentation 
tasks in clinical practices, especially to 3D shape sequences of time-varying organs. 
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